DFT/TD-DFT investigations on photovoltaic properties of N-Phenyl-N-(thiophen-2-yl)-1H-Pyrrol-2-amine and N,N-diphenylthiophen-2-amine based hexatriyne-thiophene Dye-sensitizers for DSSCs

Authors

DOI:

https://doi.org/10.5564/mjc.v26i54.3807

Keywords:

N-phenyl-N-(thiophen-2-yl)-1H-pyrrol-2-amine, N,N-diphenylthiophen-2-amine, hexatriyne-thiophene, DFT

Abstract

The optoelectronic and charge transfer properties of dyes containing N,N-diphenylthiophen-2-amine (NBBT) or N-phenyl-N-(thiophen-2-yl)-1H-pyrrol-2-amine (NTPA) as donor were computationally studied using density functional theory (DFT) and time dependent- density functional theory (TD-DFT) methods. Thiophene, fused thiophene and bridged thiophene derivatives were incorporated to extend the hexatriyne (LCC) π-linker (hexatriyne-thiophene π-linker) to examine the effect thiophene derivatives on the photovoltaic and optoelectronic properties of the designed dyes. The  and  values show that insertion of boron into hexatriyne-bridged thiophenes π-linker in NTPA-6 and NBBT-6 dyes traps some of the electrons to be transmitted to the acceptor moiety, which may account for low oscillation strengths observed for the dyes. This subsequently affects the light harvesting efficiency (LHE) and open current circuit (VOC), although, the fractions of electrons transmitted could probably take shorter time ( getting into the conduction band (CB) of semiconductor. The coupling constant (/VRP/) reveals influence on the rate of regeneration of the dyes. Also, slight lowering of EHOMO-ELUMO (ΔEg, eV) in respective NTPA dyes than NBBT dyes indicate more electrons are pushed by N-phenyl-N-(thiophen-2-yl)-1H-pyrrol-2-amine into the π-linker than N,N-diphenylthiophen-2-amine, and incorporation of fused thiophene and bridged thiophenes (except NTPA-6 and NBBT-6) improve the LHE dyes’s ability than PY-3N; thus hexatriyne-thiophene containing dyes exhibit favorable optoelectronic properties, making them good candidates for light absorption in dye sensitized solar cells (DSSCs).

Downloads

Download data is not yet available.
Abstract
275
PDF
209

Author Biographies

Dayo Felix Latona, Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria

Associate Professor 

Willaim Ojoniko Anthony, Department of Chemistry, Federal University, Lokoja, Kogi State, Nigeria

Assistant Lecturer

Pelumi Gabriel Adebayo, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbosomo, Nigeria.

Graduate Student

Banjo Semire, Department of Chemistry, Federal University, Lokoja, Kogi State, Nigeria

Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbosomo, Nigeria

References

1. 1. Yen Y.S., Chou H.H., Chen Y.C., Hsu C.Y., Lin J.T. (2012) Recent developments in molecule-based organic materials for dye-sensitized solar cells. J. Mater. Chem., 22, 8734-8747, https://doi.org/10.1039/C2JM30362K

2. Birel O., Nadeem S., Duman H. (2017) Porphyrin-based dye-sensitized solar cells (dsscs): A review. J. Fluoresc., 27, 1075-1085, https://doi.org/10.1007/s10895-017-2041-2

3. Semire B., Afolabi S.O., Latona D.F., Oyebamiji A.K., Adeoye M.D., et al (2023) Quantum chemical elucidation on the optoelectronic properties of n2‑(4‑aminophenyl)pyridine‑2,5‑diamine based dyes for solar cells utilization. Chem. Afr., 6, 2649-2663, https://doi.org/10.1007/s42250-023-00674-8

4. Thomas S., Deepak T.G., Anjusree G.S., Arun T.A., Nair S.V., et al. (2014) A review: On counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A, 2, 4474-4490, https://doi.org/10.1039/C3TA13374E

5. Wu M., Lin X., Wang Y., Wang L., Gu, W., et al. (2012) Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J. Am. Chem. Soc., 134, 7, 3419-3428, https://doi.org/10.1021/ja209657v

6. Al-Ezzi A.S., Ansari M.N.M. (2022) Photovoltaic solar cells: A review. Appl. Syst. Innov., 5, 67. https://doi.org/10.3390/asi5040067

7. Hara K., Horiguchib T., Kinoshitab T., Sayamaa K., Sugiharaa H., et al. (2000) Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials and Solar Cells. 64(2), 115-134. https://doi.org/10.1016/S0927-0248(00)00065-9

8. Prihanto T., Sudijito S., Denny W, Lilis Y. (2019) Performance improvement of dye sensitized solar cell (DSSCs) based natural dyes. Int. J. Photoenergy, 4384728, https://doi.org/10.1155/2019/4384728

9. Jamshidvand A., Keshavarzi R., Mirkhani V., et al. (2021) A novel Ru (II) complex with high absorbance coefficient: efficient sensitizer for dye-sensitized solar cells. J. Mater. Sci: Mater. Electron, 32, 9345-9356. https://doi.org/10.1007/s10854-021-05598-y

10. Ajayi T.J, Ollengo M., le Roux L., Pillay M.N., Staples R.J., et al. (2019). Heterodimetallic ferrocenyl dithiophosphonate complexes of nickel (II), zinc (II) and cadmium (II) as sensitizers for TiO2-based dye-sensitized solar cells. Chemistry, 25, 7416-7424, https://doi.org/10.1002/slct.201900622

11. Cakar S., Özacar M. (2019) The pH dependent tannic acid and Fe-tannic acid complex dye for dye sensitized solar cell applications. J. Photochem. Photobiol. Chem., 371, 282-291, https://doi.org/10.1016/j.jphotochem.2018.11.030

12. Anik S., Miftahussurur H.P., Abul Kalam B., Anil K.B., Axel G. (2023) Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review. Dyes and Pigments, 213, 111087, https://doi.org/10.1016/j.dyepig.2023.111087

13. Liu Q., Ren P., Wang X., Li Y. (2018) Experimental and theoretical investigation of photoelectrical properties of tetrabromophenol blue and bromoxylenol blue based solar cell. J. Nanomater., 9720595. https://doi.org/10.1155/2018/9720595

14. Semire B., Abdulsalami I.O., Latona D.F., Oyebamiji A.K., Owonikoko A.D., et a.l (2023) Effect of Seleno-thiophene π-linkers on electronic and photovoltaic properties of boro-phenothiazine donors for DSSCs application: TD-DFT and DFT methods. Russ. J. Phys. Chem. A, 98, 156-168, https://doi.org/10.1134/S0036024424010217

15. Mozaffari S., Nateghi M.R., Zarandi M.B. (2017) An overview of the challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 71, 675-686, https://doi.org/10.1016/j.rser.2016.12.096

16. Dindorkar S.S., Yadav A. (2022) Insights from density functional theory on the feasibility of modified reactive dyes as dye sensitizers in dye-sensitized solar cell applications. Solar, 2, 12-31, https://doi.org/10.3390/solar2010002

17. Obiyenwa G.K., Semire B., Oyebamiji A.K., Abdulsalami I.O., Latona D.F., et al, (2023) TD-DFT and DFT investigation on electrons transporting efficiency of 2-cyano-2-pyran-4-ylidene-acetic acid and 2-cyanoprop-2-enoic acid as acceptors for thiophene-based π-linkers dye-sensitized solar cells. Eurasian J. Chem., 111(3), 69-82. https://doi.org/10.31489/2959-0663/3-23-9

18. Zdyb A., Krawczyk S. (2014) Adsorption and electronic states of morin on TiO2 nanoparticles. Chem. Phys., https://doi.org/10.1016/j.chemphys.2014.08.009

19. Ibrahim O.A., Bello I.A., Semire B., Bolarinwa H.S., Boyo A. (2016) Purity-performance relationship of anthocyanidins as sensitizer in dye-sensitized solar cells. Int. J. Phys. Sci., 11(8), 104-111. https://doi.org/10.5897/IJPS2016.4468

20. Liu B., Wang R., Mi W., Li X., Yu H. (2012) Novel branched coumarin dyes for dye-sensitized solar cells: significant improvement in photovoltaic performance by simple structure modification. J. Mater. Chem., 22, 15379-15387,

https://doi.org/10.1039/C2JM32333H

21. Britel O., Fitri A., Benjelloun A.T. (2023) New carbazole-based dyes for efficient dye-sensitized solar cells: a DFT insight. Struct. Chem., 34, 1827-1842 https://doi.org/10.1007/s11224-023-02122-2

22. William O.A., Obiyenwa K.G., Abubakar M.K., Salawua O.W., Semire B., (2024) Molecular design and optoelectronic investigations of phenothiazine D-A-π-A dye sensitizers using DFT/TD-DFT method for potential solar cell application. Phys. Chem. Res., 12(4), 901-918. https://doi.org/10.22036/pcr.2024.444731.2482

23. Semire B., Oyebamiji A.K., Odunola O.A. (2017) Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]aceticacid derivatives via conjugate bridge and luorination of acceptor units for effective D–π–A dye-sensitized solar cells: DFT–TDDFT approach. Res. Chem. Intermed., 43, 1863-1879. https://doi.org/10.1007/s11164-016-2735-0

24. Hailu Y.M., Pham-Ho M.P., Nguyen M.T., Jiang J.C. (2020) Silole and selenophene-based D-π-A dyes in dye-sensitized solar cells: Insights from optoelectronic and regeneration properties. Dyes Pigm., 176, 108243.

doi.org/10.1016/j.dyepig.2020.108243

25. Akram M., Siddique S.A., Iqbal J., Hussain R., Mehboob M.Y., et al. (2021) End-capped engineering of bipolar diketopyrrolopyrrole based small electron acceptor molecules for high performance organic solar cells. Comput. Theor. Chem., 1201, 113242

26. Mustafa FM., Abdel-Latif MK., Abdel-Khalek AA., Kühn O. (2023) Efficient D-π-π-A-type dye sensitizer based on a benzothiadiazole moiety: A computational study. Molecules, 28, 5185. https://doi.org/10.3390/molecules28135185

27. Semire B., Obiyenwa K.G., William O.A., Abubakar M.K., Godwin M.A., et al. (2024) Manipulation of 2-[2-(10H-phenothiazin-3-yl)thiophen-3-yl]10H-phenothiazine based D-A-π-A dyes for effective tuning of optoelectronic properties and intramolecular charge transfer in dye sensitized solar cells: A DFT/TD-DFT Approach. Adv. J. Chem. A, 7(1), 41-58, https://doi.org/10.48309/ajca.2024.412442.1400

28. Afolabi S.O, Semire B, Akiode O.K, Afolabi T.A, Adebayo G.A, et al. (2020) Design and theoretical study of phenothiazinebased low bandgap dye derivatives as sensitizers in molecular photovoltaics. Opt. Quantum Electron., 52, 476. https://doi.org/10.1007/s11082-020-02600-5

29. Salimi Beni A.R., Karami M., Hosseinzadeh B., Ghahary R. (2018) New organic dyes with diphenylamine core for dyesensitized solar cells. J. Mater. Sci., 29, 6323-6336. https://doi.org/10.1007/s10854-018-8612-4

30. Afolabi S.O., Semire B., Idowu M.A. (2021) Electronic and optical properties’ tuning of phenoxazine-based D-A2-π-A1 organicdyes for dye-sensitized solar cells. DFT/TDDFT investigations. Heliyon. 7(4) e06827. https://doi.org/10.1016/j.heliyon.2021.e06827

31. Buene A.F., Boholm N., Hagfeldt A., Hoff B. (2019) Effect of furan π-spacer and triethylene oxide methyl ether substituents on performance of phenothiazine sensitizers in dye-sensitized solar cells. New J. Chem., 43, 9403-9410. https://doi.org/10.1039/C9NJ01720H

32. Ouared I., Rekis M., Trari M. (2021) Phenothiazine based organic dyes for dye sensitized solar cells: A theoretical study on the role of π-spacer. Dyes Pigm., 190, 109330. https://doi.org/10.1016/j.dyepig.2021.109330

33. Consiglio G., Gorcyński A., Petralia S., Forte G. (2023) Predicting the dye-sensitized solar cell performance of novel linear carbon chain-based dyes: Insights from DFT simulations. Dalton Trans., 52, 15995-16004, https://doi.org/10.1039/D3DT01856C

34. Casari C.S., Tommasini M., Tykwinski R.R., Milani A. (2016) Carbon-atom wires: 1-D systems with tunable properties. Nanoscale, 8, 4414-4435, https://doi.org/10.1039/C5NR06175J

35. Consiglio G., Gorcyński A., Petralia S. Forte G. (2023b) Computational study of linear carbon chain based organic dyes for dye sensitized solar cells. RSC Adv., 13, 1019-1030, https://doi.org/10.1039/D2RA06767F

36. Spartan 14 Wavefunction, INC, Irvine, CA. 2015.

37. Domingo L.R., Ríos-Gutiérrez M., Pérez P. (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 21, 748, https://doi.org/10.3390/molecules21060748

38. Liu X., Cole J.M., Low K.S. (2013) Molecular origins of dye aggregation and complex formation effects in coumarin 343. J. Phys. Chem. C, 117, 14723-14730, https://doi.org/10.1021/jp4024266

39. Ren P., Sun C., Shi Y., Song P., Yang Y., Li Y. (2019) Global performance evaluation of solar cells using two models: from charge-transfer and recombination mechanisms to photoelectric properties. J. Mater. Chem. C, 7(7), 1934–1947,

https://doi.org/10.1039/C8TC05660A

40. Muhammed K.A., Anthony W.O., Obiyenwa K.G., Salawu O.W., Semire B. (2025) Phenyl-9H-Phenothiazine and phenyl-9H-Phenoxazinebased metal free dye-sensitizers (D-A2-π-A1) with thieno[3,4-b]pyrazine auxiliary acceptor for dyesensitized solar cell applications: DFT and TD-DFT computational studies. J. Sulf. Chem., https://doi.org/10.1080/17415993.2025.2463490

41. Olatunde A.M., Adedokun N.O., Owonikoko A.D., Obiyenwa G.K., Anthony W.O., et al. (2024) Optoelectronic of properties of N1-[4-(diethylamino)phenyl]-N4,N4-diethyl-N1-(thiophen-2-yl)benzene-1,4-diamine-based (D-A2-π-A) dyes with enzothiadiazole /dihydrothieno[3,4-b][1,4]dioxine as auxiliary acceptor for DSSCs applications: DFT/TD-DFT approach. Russ. J. Gen. Chem., 94(10), 2710-2720, https://doi.org/10.1134/S1070363224100165

42. Delgado-Montiel T., Baldenebro-López J., Soto-Rojo R., Glossman-Mitnik D., (2020) Theoretical study of the effect of π-bridge on optical and electronic properties of carbazole-based sensitizers for DSSCs. Molecules, 25, 3670, https://doi:10.3390/molecules25163670

43. Abdel Aal S., Awadh D. (2023) The effect of central transition metals and electron-donating substituent on the performances of dye/TiO2 interface for dye-sensitized solar cells applications. J. Mol. Graphics Model, 123, 108525. https://doi.org/10.1016/j.jmgm.2023.108525

44. Patil D.S., Avhad K.C., Sekar N. (2018) Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties – DFT approach. Computational and Theoretical Chem., 1138, 75-83. https://doi.org/10.1016/j.comptc.2018.06.006

45. Kacimi R., Raftani M., Abram T., Azaid A., Ziyat H., et al. (2021) Theoretical design of D-π-A system new dyes candidate for DSSC application. Heliyon, 7(6), e07171. https://doi.org/10.1016/j.heliyon.2021.e07171

46. Irfan A. (2013) Quantum chemical investigations of electron injection in triphenylamine-dye sensitized TiO2 used in dye sensitized solar cells. Mater. Chem. Phys., 142(1), 238-247. https://doi.org/10.1016/j.matchemphys.2013.07.011

47. Janjua MRSA. (2022) All‐small‐molecule organic solar cells with high fill factor and enhanced open‐circuit voltage with 18.25% PCE: Physical insights from quantum chemical calculations. Spectrochim. Acta A, 15, 279, 121487, https://doi.org/10.1016/j.saa.2022.121487

48. Khan M.U., Abida A.A., Hassan A.U.I., Alshehri S.M., Sohail A. (2024) DFT simulations of photovoltaic parameters of dye‐sensitized solar cells with new efficient sensitizer of indolo[3,2‐b]carbazole complexes. Energy Sci. Eng., 1-23. https://doi.org/10.1002/ese3.1834

Downloads

Published

2025-10-10

How to Cite

Obiyenwa, K. G., Olatunde, A. M., Latona, D. F., Anthony, W. O., Adebayo, P. G., & Semire, B. (2025). DFT/TD-DFT investigations on photovoltaic properties of N-Phenyl-N-(thiophen-2-yl)-1H-Pyrrol-2-amine and N,N-diphenylthiophen-2-amine based hexatriyne-thiophene Dye-sensitizers for DSSCs. Mongolian Journal of Chemistry, 26(54). https://doi.org/10.5564/mjc.v26i54.3807

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.