A quantum chemical study of the interaction of carboxylic acids with DMSO

Authors

  • Mu Ren Department of Chemistry School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, 14191, Mongolia https://orcid.org/0000-0002-8358-5993
  • Ao Rigele Academic Affairs, Hulunbuir University, Hulunbuir, 021108, China
  • Na Shun Agilent Technologies China Co., Ltd., Beijing, 100102, China
  • Narantsogt Natsagdorj Department of Chemistry School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, 14191, Mongolia https://orcid.org/0000-0002-1040-1276

DOI:

https://doi.org/10.5564/mjc.v23i49.1407

Keywords:

quantum chemistry, hydrogen bonding natures, acetic acid, dimethylsulfoxide

Abstract

Quantum chemical computational methods, which use quantum mechanics and molecular dynamics theory, have developed rapidly in the past few decades, and quantum chemical computation has penetrated almost all fields of chemistry. Hydrogen bonds are ubiquitously common weak intermolecular interactions. Moreover, the bonding mechanism of hydrogen bonds is considered to be different from that of chemical bonding. Because of the difficulty of experimental studies, a more accurate calculation of hydrogen bonding from theory is a more convenient and direct method to understand hydrogen bonding. Density functional theory (DFT) is the most widely used general function in quantum chemical calculations, giving accurate results for most chemical systems. In this paper, the geometries of the hydrogen-bonded dimer complex of acetic acid and DMSO was structurally optimized and potential energy surface was determined. The geometries of four related hydrogen-bonded dimer complexes were fully optimized using the M06-2X/6-311++G (3d, 2p) exchange-correlation functional with DFT-D3(BJ) empirical dispersion correction. We found that hydrogen bonding is a mixture of electrostatic interactions and covalent bonding, and that hydrogen bonding is a kind of force with different percentages of electrostatic and covalent character, rather than a special force independent of chemical bonding. Thus, more clearly defining our inherent classification of forces between substances provides a new perspective for our future study of weak interactions such as hydrogen bonding.

Downloads

Download data is not yet available.
Abstract
192
PDF 161

References

Grimme S, Schreiner PR. Computational chemistry: the fate of current methods and future challenges. Angewandte Chemie International Edition. 2018;57(16):4170-6. https://doi.org/10.1002/anie.201709943

Tien HT, Ottova-Leitmannova A. Planar Lipid Bilayers (BLM's) and Their Applications. Elsevier; 2003.

Latimer WM, Rodebush WH. Polarity and ionization from the standpoint of the Lewis theory of valence. Journal of the American Chemical Society. 1920;42(7):1419-33. https://doi.org/10.1021/ja01452a015

Van Doren JB. Valence and the structure of atoms and molecules (Lewis, GN). ACS Publications; 1967. https://doi.org/10.1021/ed044pA82

Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and applied chemistry. 2011;83(8):1637-41. https://doi.org/10.1351/PAC-REC-10-01-02

Etter MC, MacDonald JC, Bernstein J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallographica Section B: Structural Science. 1990;46(2):256-62. https://doi.org/10.1107/S0108768189012929

Taylor R, Kennard O. Hydrogen-bond geometry in organic crystals. Accounts of chemical research. 1984;17(9):320-6. https://doi.org/10.1021/ar00105a004

Stillinger FH. Water revisited. science. 1980;209(4455):451-7. https://doi.org/10.1126/science.209.4455.451

Diercksen GH, Kraemer WP, Roos BO. SCF-CI studies of correlation effects on hydrogen bonding and ion hydration. Theoretica chimica acta. 1975;36(4):249-74. https://doi.org/10.1007/BF00549690

Carroll MT, Bader RF. An analysis of the hydrogen bond in BASE-HF complexes using the theory of atoms in molecules. Molecular Physics. 1988;65(3):695-722. https://doi.org/10.1080/00268978800101351

Huggins ML. 50 Years of hydrogen bond theory. Angewandte Chemie International Edition in English. 1971;10(3):147-52. https://doi.org/10.1002/anie.197101471

Pauling L, Brockway LO. The structure of the carboxyl group: I. The investigation of formic acid by the diffraction of electrons. Proceedings of the National Academy of Sciences of the United States of America. 1934;20(6):336. https://doi.org/10.1073/pnas.20.6.336

Wu S. Polymer interface and adhesion. Routledge; 2017. https://doi.org/10.1201/9780203742860

Riel AMS, Rowe RK, Ho EN, Carlsson A-CC, Rappé AK, Berryman OB, et al. Hydrogen bond enhanced halogen bonds: a synergistic interaction in chemistry and biochemistry. Accounts of chemical research. 2019;52(10):2870-80. https://doi.org/10.1021/acs.accounts.9b00189

Karas LJ, Wu CH, Das R, Wu JIC. Hydrogen bond design principles. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2020;10(6):e1477. https://doi.org/10.1002/wcms.1477

Gibb BC. The centenary (maybe) of the hydrogen bond. Nature Publishing Group; 2020. https://doi.org/10.1038/s41557-020-0524-2

Niemann T, Strate A, Ludwig R, Zeng HJ, Menges FS, Johnson MA. Cooperatively enhanced hydrogen bonds in ionic liquids: closing the loop with molecular mimics of hydroxy-functionalized cations. Physical Chemistry Chemical Physics. 2019;21(33):18092-8. https://doi.org/10.1039/C9CP03300A

Mishra KK, Borish K, Singh G, Panwaria P, Metya S, Madhusudhan M, et al. Observation of an Unusually Large IR Red-Shift in an Unconventional S-H••• S Hydrogen-Bond. The Journal of Physical Chemistry Letters. 2021;12(4):1228-35. https://doi.org/10.1021/acs.jpclett.0c03183

Mishra KK, Singh SK, Ghosh P, Ghosh D, Das A. The nature of selenium hydrogen bonding: gas phase spectroscopy and quantum chemistry calculations. Physical Chemistry Chemical Physics. 2017;19(35):24179-87. https://doi.org/10.1039/C7CP05265K

Scheiner S. The Hydrogen Bond: A Hundred Years and Counting. Journal of the Indian Institute of Science. 2020;100(1):61-76. https://doi.org/10.1007/s41745-019-00142-8

Dai ZY, Chen WH, Zhou H, Yang HY. [Studies on quantitative chromatographic retention-structure relationships]. Se pu = Chinese Journal of Chromatography. 2000 Mar;18(2):125-127. PMID: 12541586.

Ren M, Natsagdorj N, Shun N. Influence and Mechanism of Polar Solvents on the Retention Time of Short-Chain Fatty Acids in Gas Chromatography. Separations. 2022;9(5):124. https://doi.org/10.3390/separations9050124

MU R, NA S, NARANTSOGT N, LI C-J. Effect of Dimethyl Sulfoxide on the Retention Time of Acetic Acid in Gas Chromatography and Its Mechanism. Chinese Journal of Applied Chemistry. 2022;39(5):852-4. https://doi.org/10.19894/j.issn.1000-0518.210175

Liu J, He X, Zhang JZ, Qi L-W. Hydrogen-bond structure dynamics in bulk water: insights from ab initio simulations with coupled cluster theory. Chemical science. 2018;9(8):2065-73. https://doi.org/10.1039/C7SC04205A

Dereka B, Yu Q, Lewis NH, Carpenter WB, Bowman JM, Tokmakoff A. Crossover from hydrogen to chemical bonding. Science. 2021;371(6525):160-4. https://doi.org/10.1126/science.abe1951

Alkorta I, Elguero J, Frontera A. Not only hydrogen bonds: Other noncovalent interactions. Crystals. 2020;10(3):180. https://doi.org/10.3390/cryst10030180

Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics. 1970;19(4):553-66. https://doi.org/10.1080/00268977000101561

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. Journal of computational chemistry. 2011;32(7):1456-65. https://doi.org/10.1002/jcc.21759

Mulliken RS. The interpretation of band spectra part III. Electron quantum numbers and states of molecules and their atoms. Reviews of modern physics. 1932;4(1):1. https://doi.org/10.1103/RevModPhys.4.1

Hund F. Allgemeine quantenmechanik des atom-und molekelbaues. Quantentheorie. Springer; 1933. p. 561-694. https://doi.org/10.1007/978-3-642-52619-0_4

Bartlett RJ, Musiał M. Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics. 2007;79(1):291. https://doi.org/10.1103/RevModPhys.79.291

Lowdin P-O. Advances in quantum chemistry. Academic Press; 1979.

Slater J. Magnetic effects and the Hartree-Fock equation. Physical Review. 1951;82(4):538. https://doi.org/10.1103/PhysRev.82.538

Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical review. 1964;136(3B):B864. https://doi.org/10.1103/PhysRev.136.B864

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical review. 1965;140(4A):A1133. https://doi.org/10.1103/PhysRev.140.A1133

Pauli W. Die allgemeinen prinzipien der wellenmechanik. Quantentheorie. Springer; 1933. p. 83-272. https://doi.org/10.1007/978-3-642-52619-0_2

Leach AR, Leach AR. Molecular modelling: principles and applications. Pearson education; 2001.

Chrayteh M, Huet TR, Dréan P. Microsolvation of myrtenal studied by microwave spectroscopy highlights the role of quasi-hydrogen bonds in the stabilization of its hydrates. The Journal of Chemical Physics. 2020;153(10):104304. https://doi.org/10.1063/5.0019957

Chen J, Min F-f, Liu L-y, Liu C-f. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations. Applied Surface Science. 2019;476:6-15. https://doi.org/10.1016/j.apsusc.2019.01.081

Bilonda MK, Mammino L. Intramolecular hydrogen bonds in conformers of quinine and quinidine: An HF, MP2 and DFT study. Molecules. 2017;22(2):245. https://doi.org/10.3390/molecules22020245

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16 Rev. C.01. Wallingford, CT2016.

Klecker C, Nair LS. Matrix Chemistry Controlling Stem Cell Behavior. Biology and Engineering of Stem Cell Niches. Elsevier; 2017. p. 195-213. https://doi.org/10.1016/B978-0-12-802734-9.00013-5

Frisch MJ, Pople JA, Binkley JS. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of chemical physics. 1984;80(7):3265-9. https://doi.org/10.1063/1.447079

Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica chimica acta. 1973;28(3):213-22. https://doi.org/10.1007/BF00533485

Glendening E, Reed A, Carpenter J, Weinhold F. NBO Version 3.1. Google Scholar There is no corresponding record for this reference. 1998.

Singh DK, Jagannathan R, Khandelwal P, Abraham PM, Poddar P. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Nanoscale. 2013;5(5):1882-93. https://doi.org/10.1039/c2nr33776b

Orozco M, Alhambra C, Barril X, López JM, Busquets MA, Luque FJ. Theoretical methods for the representation of solvent. Molecular modeling annual. 1996;2(1):1-15. https://doi.org/10.1007/s0089460020001

Lu T, Chen Q. van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions. Journal of Molecular Modeling. 2020;26(11):1-9. https://doi.org/10.1007/s00894-020-04577-0

Rohmann K, Kothe J, Haenel MW, Englert U, Hölscher M, Leitner W. Hydrogenation of CO2 to formic acid with a highly active ruthenium acriphos complex in DMSO and DMSO/water. Angewandte Chemie International Edition. 2016;55(31):8966-9. https://doi.org/10.1002/anie.201603878

Leonard J, Lygo B, Procter G. Advanced practical organic chemistry. CRC press; 2013.https://doi.org/10.1201/b13708

Mu L, Shi Y, Chen L, Ji T, Yuan R, Wang H, et al. [N-Methyl-2-pyrrolidone][C1-C4 carboxylic acid]: a novel solvent system with exceptional lignin solubility. Chemical Communications. 2015;51(70):13554-7. https://doi.org/10.1039/C5CC04191K

Safonova L, Pryakhin A, Shmukler L, Fadeeva YA. NMR studies of N, N-dimethylformamide mixtures with acetic acid and ethanol. Russian Journal of General Chemistry. 2009;79(2):246-51. https://doi.org/10.1134/S1070363209020133

van der Lubbe SC, Fonseca Guerra C. The nature of hydrogen bonds: A delineation of the role of different energy components on hydrogen bond strengths and lengths. Chemistry-An Asian Journal. 2019;14(16):2760-9. https://doi.org/10.1002/asia.201900717

Herschlag D, Pinney MM. Hydrogen bonds: Simple after all? Biochemistry. 2018;57(24):3338-52. https://doi.org/10.1021/acs.biochem.8b00217

Řezáč J, Hobza P. Ab initio quantum mechanical description of noncovalent interactions at its limits: approaching the experimental dissociation energy of the HF dimer. Journal of Chemical Theory and Computation. 2014;10(8):3066-73. https://doi.org/10.1021/ct500047x

Howard JC, Gray JL, Hardwick AJ, Nguyen LT, Tschumper GS. Getting down to the fundamentals of hydrogen bonding: Anharmonic vibrational frequencies of (HF) 2 and (H2O) 2 from ab initio electronic structure computations. Journal of Chemical Theory and Computation. 2014;10(12):5426-35. https://doi.org/10.1021/ct500860v

Fukui K. Recognition of stereochemical paths by orbital interaction. Accounts of Chemical Research. 1971;4(2):57-64. https://doi.org/10.1021/ar50038a003

Frey PA, Whitt SA, Tobin JB. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science. 1994;264(5167):1927-30. https://doi.org/10.1126/science.7661899

Cleland W, Kreevoy MM. Low-barrier hydrogen bonds and enzymic catalysis. Science. 1994;264(5167):1887-90. https://doi.org/10.1126/science.8009219

Hermansson K. Hydrogen bonds-on the move. HBOND2017, 10-14 Sept, Jyväskylä, Finland2017. https://doi.org/10.1016/B978-0-12-820042-1.00015-8

Wolters LP, Bickelhaupt FM. Halogen bonding versus hydrogen bonding: a molecular orbital perspective. ChemistryOpen. 2012;1(2):96-105. https://doi.org/10.1002/open.201100015

Lewars EG. The concept of the potential energy surface. Computational Chemistry. Springer; 2016. p. 9-49. https://doi.org/10.1007/978-3-319-30916-3_2

Ma J, Liu Y, Xie M-x. Interaction between three isoflavones and different isomers of human serum albumin. Spectroscopy and Spectral Analysis. 2012;32(1):1-6. http://dx.chinadoi.cn/10.3964/j.issn.1000-0593(2012)01-0001-06

FANG R, LENG X-j, WU X, LI Q, HAO R-f, REN F-z, et al. Intermolecular Hydrogen Bond between Protein and Flavonoid and Its Contribution to the Stability of the Flavonoids. Spectroscopy and Spectral Analysis. 2012;32(1):108-12. https://doi.org/10.3964/j.issn.1000-0593(2012)01-0108-05

Zhang L, Wei L, Zhai S, Zhao D, Sun J, An Q. Hydrogen bond promoted thermal stability enhancement of acetate based ionic liquid. Chinese Journal of Chemical Engineering. 2020;28(5):1293-301. https://doi.org/10.1016/j.cjche.2020.02.019

Badbedast M, Izadyar M, Gholizadeh M. The Investigation of the Structure and Stability of Catechol Complexes with Nitrate and Hydrogen Sulphate Ions through Theoretical Study of Hydrogen Bond. Nashrieh Shimi va Mohandesi Shimi Iran. 2019;37(4):287-300.

Gridneva I, Milman YV, Trefilov V. On the Mechanical Properties of Crystals with Covalent Bond. physica status solidi (b). 1969;36(1):59-67. https://doi.org/10.1002/pssb.19690360104

Stasyuk OA, Sedlak R, Guerra CF, Hobza P. Comparison of the DFT-SAPT and canonical EDA schemes for the energy decomposition of various types of noncovalent interactions. Journal of Chemical Theory and Computation. 2018;14(7):3440-50. https://doi.org/10.1021/acs.jctc.8b00034

Malloum A, Conradie J. Structures, binding energies and non-covalent interactions of furan clusters. Journal of Molecular Graphics and Modelling. 2022;111:108102. https://doi.org/10.1016/j.jmgm.2021.108102

Downloads

Published

2022-05-27

How to Cite

Ren, M., Rigele, A., Shun, N., & Natsagdorj, N. (2022). A quantum chemical study of the interaction of carboxylic acids with DMSO. Mongolian Journal of Chemistry, 23(49). https://doi.org/10.5564/mjc.v23i49.1407

Issue

Section

Articles