Seasonal variation in hematological references range, and some serum chemical parameters of Brandt’s Vole (Lasiopodomys brandtii Radde, 1861)

Authors

DOI:

https://doi.org/10.5564/pib.v38i1.2536

Keywords:

hematology, indicator, physiological reference, seasonal variation, Brandt’s vole

Abstract

Hematology and serum chemistry references are essential diagnostic tools to assess the impact of abiotic, biotic, and anthropogenic activities on wildlife and the ecosystem.

The Brandt’s Vole (Lasiopodomys brandtii Radde, 1861) is a widely distributed and endemic species in the Mongolian plateau and plays a crucial role in the steppe ecosystem as a secondary consumer in the food chain. This study aimed to provide baseline hematology and serum chemistry data for wild Brandt’s vole and to evaluate whether these parameters differ among season, sex, and age classes.

Twenty-four variables were analyzed for 660 individuals (330 male and 330 female) blood samples collected by 11 field and semi-stationary surveys conducted in Khentii, Sukhbaatar, Tuv, Bulgan, and Zavkhan provinces from 2016 until 2021.

Season significantly influenced lymphocyte, erythrocyte, platelet, and hemoglobin range. A 94.4% of all hematological parameters were season dependent. Aspartate aminotransferase (AST) and glucose levels changed with sex in Brandt’s Vole, and 83% of all 24 parameters were significantly different in age classes.

Цайвар үлийч (Lasiopodomys brandtii Radde, 1861)-ийн цусны үндсэн үзүүлэлтийн улирлын хамаарал ба биохимийн шинжилгээний зарим дүн

Хөхтөн амьтны физиологийн жиших эх хэрэглэхүүн (эталон) – ийг тогтосноор экосистем ба амьтдад нөлөөлж буй биотик, абиотик болон антропоген хүчин зүйлийн нөлөөллийг илрүүлэх, үнэлэн тогтоох, хамгааллын арга хэмжээг төлөвлөх зэрэг олон ач холбогдолтой.

Монголын тэгш өндөрлөгийн эндемик зүйлийн нэг цайвар үлийч (Lasiopodomys brandtii Radde, 1861) нь идэш тэжээлийн гинжин хэлхээнд хоёрдогч консумент болохын хувьд тал, хээрийн экосистемд онцгой үүрэг оролцоотой. Энэхүү судалгааны ажил цайвар үлийчийн физиологийн жиших эх хэрэглэхүүнийг тогтоох, уг үзүүлэлтүүдийн нас, хүйс, улирлын хамаарлаар өөрчлөгдөх байдлыг тодорхойлох үндсэн зорилготой.

Хэнтий, Сүхбаатар, Төв, Булган, Завхан аймгийн нутагт 2016-2021 онд нийт 11 удаагийн хээрийн ба хагас суурин судалгааг хийж, дээж материалыг бүрдүүлсэн. Энэ өгүүлэлд цуглуулсан судалгааны дээж, эх хэрэглэхүүнээс 600 (300 эр, 300 эм) бодгалийн гематологи, морфологийн хэмжилт хийсэн дүн, 60 бодгалийн цусны ийлдсэнд биохимийн үзүүлэлтүүдийг тодорхойлсон үр дүнг сонгож физиологийн жиших эх хэрэглэхүүнийг тогтоолоо.

Цагаан, улаан, ялтаст эсийн тоо, гемоглобины агууламж улирлаас өндөр хамааралтай буюу P < 0.0001 бөгөөд нийт геметологи үзүүлэлтийн 94.4% нь улирлын байдлаас хамаарч агууламж өөрчлөгдөж байв. Цусны сийвэнгийн АСАТ болон глюкозын агууламж хүйсээс хамаарч харилцан адилгүй агууламжтай байсан ба нийт 24 үзүүлэлтийн 83% нь насны бүлгүүдэд ялгаатай үр дүн үзүүлэв.

Түлхүүр үгс: гематологи, физиологийн жиших эх хэрэглэхүүн, улирлын хамаарал, эталон

Downloads

Download data is not yet available.
Abstract
130
PDF
153

References

A. Li and T. Kasai, “The Asia Pacific Strategy for Emerging Diseases – a strategy for regional health security,” Western Pacific Surveillance and Response Journal : WPSAR, vol. 2, no. 1, pp. 6, Mar. 2011, https://doi.org/10.5365/WPSAR.2011.2.1.001.

L. Lagos and F. Barcena, “Spatial variability in wolf diet and prey selection in Galicia (NW Spain),” Mammal research, 2018, Accessed: Jan. 24, 2022. [Online]. Available: http://dx.doi.org/10.1007/s13364-018-0352-6

B. K. McNab, “Geographic and temporal correlations of mammalian size reconsidered: a resource rule,” Oecologia, vol. 164, no. 1, pp. 13–23, Sep. 2010, https://doi.org/10.1007/s00442-010-1621-5.

M. Wang et al., “Ambient temperature correlates with geographic variation in body size of least horseshoe bats,” Curr Zool, vol. 66, no. 5, pp. 459–465, Oct. 2020, https://doi.org/10.1093/cz/zoaa004.

D. A. Taggart et al., “Environmental Factors Influencing Hairy-Nosed Wombat Abundance in Semi-Arid Rangelands,” The Journal of Wildlife Management, vol. 84, no. 5, pp. 921–929, 2020.

B. A. Fancourt, C. E. Hawkins, and S. C. Nicol, “Mechanisms of climate-change-induced species decline: spatial, temporal and long-term variation in the diet of an endangered marsupial carnivore, the eastern quoll,” Wildlife research, 2018, https://doi.org/10.1071/AM22010.

D. Avirmed, “Taxonomic problems of the Brandt’s Vole,” Proceedings of the Institute of General and Experimental Biology, vol. 15, pp. 62–64, 1983. (in Mongolian)

A. G. Bannikov, Guide to the Mammals of Mongolia, 1st ed. USSR: Publishing House of Academies of Sciences, 1953. (in Russian)

N. Davaa, “Effects of Brandt’s vole on soil and plants,” National University of Mongolia, Scientific Papers, vol. 2, no. 13, pp. 99–108, 1962. (in Mongolian)

S. Dulamtseren, Taxonomy and Mongolian Mammals and Classification (Latin – Mongolian – English – Russian), vol. 1, Institute of Linguistics, Institute of Biology, Mongolian Academy of Sciences. Ulaanbaatar, 2003. (in Mongolian)

R. Samiya, N. Batsaikhan, and L. Ariuntsetseg, “Population dynamics of the Brandt’s vole and its role in steppe ecosystems,” United Nations, 1, 2002. (in Mongolian)

O. Chognii, “Changing of field vegetation under the influence of Vole,” Proc. Inst. Biol., vol. 4, pp. 204–216, 1969. (in Mongolian)

P. P. Dmitriev, “Geobotanical and geomorphological indicators in the study of the range of Brandt’s vole in Mongolia.,” Theriofauna of Russia and adjacent territories. Malta International Meeting, pp. 115–116, 2003. (in Russian)

P. P. Dmitriev and Ya. Adya, “Population structure of Brandt vole, ecological populations,” Proc. Inst. Biol. vol. 22, pp. 77–82, 2000. (in Russian)

P. Boye, Native mammals, a key to identifying wild mammals in the Federal Republic of Germany apart from the orders seals, even-toed ungulates and whales, 11th ed. German Youth Association for Nature Observations, 1994. (in German)

M. I. Hussain et al., “Blood, Hair and Feces as an Indicator of Environmental Exposure of Sheep, Cow and Buffalo to Cobalt: A Health Risk Perspectives,” Sustainability, vol. 13, no. 14, Art. no. 14, Jan. 2021, https://doi.org/10.3390/su13147873.

A. Maceda-Veiga, J. Figuerola, A. Martínez-Silvestre, G. Viscor, N. Ferrari, and M. Pacheco, “Inside the Redbox: Applications of haematology in wildlife monitoring and ecosystem health assessment,” Science of the Total Environment, vol. 514, pp. 322–332, May 2015, https://doi.org/10.1016/J.Scitotenv.2015.02.004.

S. E. Jorgensen, Handbook of Ecological Models used in Ecosystem and Environmental Management. CRC Press, 2016. https://doi.org/10.1201/b10791.

M. B. Brooks, K. E. Harr, D. M. Seelig, K. J. Wardrop, and D. J. Weiss, Eds., Schalm’s Veterinary Hematology. Wiley, 2022. https://doi.org/10.1002/9781119500537.

N. A. Andersen, U. Mesch, D. J. Lovell, and S. C. Nicol, “The effects of sex, season, and hibernation on haematology and blood viscosity of free-ranging echidnas (Tachyglossus aculeatus),” vol. 78, no. 2, pp. 174–181, Mar. 2011, https://doi.org/10.1139/Z99-199.

S. B. Harvey, P. M. Krimer, M. T. Correa, and M. A. Hanes, “Hematology and plasma chemistry reference intervals for mature laboratory pine Brandt’s Voles (Microtus pinetorum) as Determined by using the nonparametric rank percentile method,” Journal of the American Association for Laboratory Animal Science, vol. 47, no. 4, pp. 35–40, 2008.

L. McMichael et al., “Haematology and plasma biochemistry of wild Black flying-foxes, (Pteropus alecto) in Queensland, Australia,” PLoS ONE, vol. 10, no. 5, 2015, https://doi.org/10.1371/journal.pone.0125741.

B. Liu, Z. Wang, and J. Lu, “Response to chronic intermittent hypoxia in blood system of Mandarin Brandt’s Vole (Lasiopodomys mandarinus).,” Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, vol. 156, no. 4, pp. 469–74, Aug. 2010, https://doi.org/10.1016/j.cbpa.2010.03.034.

K. Shichinohe, M. Shimizu, K. Haga, T. Iedokoro, and K. Fujita, “Basic Studies on the Mongolian Gerbil as a Susceptible Host to Filarial Infection: Comparative Studies on Serum Biochemical Values Between the Wild-Colored Gerbil and the Coat Color Mutants.,” Japanese Journal of Tropical Medicine and Hygiene, vol. 21, no. 4, pp. 201–206, Jan. 1993, https://doi.org/10.2149/tmh1973.21.201.

Q. He et al., “Sex-specific reference intervals of hematologic and biochemical analytes in Sprague-Dawley rats using the nonparametric rank percentile method,” PLoS ONE, vol. 12, no. 12, 2017, https://doi.org/10.1371/journal.pone.0189837.

S. Schwerin, B. Zeis, W. Horn, H. Horn, and R. J. Paul, “Hemoglobin concentration in Daphnia (D. galeata-hyalina) from the epilimnion is related to the state of nutrition and the degree of protein homeostasis,” Limnology and Oceanography, vol. 55, no. 2, pp. 639–652, 2010, https://doi.org/10.4319/lo.2010.55.2.0639.

E. D. D. Villota, M. T. G. Carmona, J. J. Rubio, and S. R. D. Andrés, “Equality of the in vivo and in vitro oxygen-binding capacity of haemoglobin in patients with severe respiratory disease,” British journal of anaesthesia, vol. 53, no. 12, pp. 1325–1328, 1981, https://doi.org/10.1093/BJA/53.12.1325.

M. Franco, C. Contreras, and R. F. Nespolo, “Profound changes in blood parameters during torpor in a South American marsupial,” Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, vol. 166, no. 2, pp. 338–342, 2013, https://doi.org/10.1016/J.CBPA.2013.07.010.

H. R. Bouma et al., “Blood cell dynamics during hibernation in the European Ground Squirrel,” Vet Immunol Immunopathol, vol. 136, no. 3–4, pp. 319–323, Aug. 2010, https://doi.org/10.1016/j.vetimm.2010.03.016.

V. Naidoo, M. Diekmann, K. Wolters, and G. E. Swan, “Establishment of selected baseline blood chemistry and hematologic parameters in captive and wild-caught African white-backed vultures (Gyps africanus),” Journal of wildlife diseases, vol. 44, no. 3, pp. 649–654, 2008, https://doi.org/10.7589/0090-3558-44.3.649.

K. HIRANO and Y. SANADA, “Diagnostic Value of Biochemistry,” Clinical Avian Medicine, vol. 2, no. 9, pp. 611–629, 2006, https://doi.org/10.12935/JVMA.65.701.

S. Langer, K. Jurczynski, and D. Widmer, “Selected hematologic and biochemical values in subadult and adult captive fossas (Cryptoprocta ferox),” vol. 44, no. 3, pp. 581–588, Sep. 2013, https://doi.org/10.1638/2012-0049R3.1.

C. B. Grindem, “Schalm’s Veterinary Hematology, 6th edition. Editors: Douglas J. Weiss, K. Jane Wardrop,” Veterinary Clinical Pathology, vol. 40, no. 2, pp. 270–270, Jun. 2011, https://doi.org/10.1111/j.1939-165X.2011.00324.x.

A. M. Silvestre, S. L. González, and R. C. Valera, “La bioquímica sanguínea en clínica de reptiles,” Consulta de difusión veterinaria, ISSN 1135-0598, Vol. 21, No. 200, 2013, págs. 31-40, vol. 21, no. 200, pp. 31–40, 2013.

S. Wolfensohn and M. Lloyd, “Handbook of Laboratory Animal Management and Welfare,” p. 391, 2013.

R. Capitelli and L. Crosta, “Overview of psittacine blood analysis and comparative retrospective study of clinical diagnosis, hematology and blood chemistry in selected psittacine species,” The veterinary clinics of North America. Exotic animal practice, vol. 16, no. 1, pp. 71–120, Jan. 2013, https://doi.org/10.1016/J.CVEX.2012.10.002.

Downloads

Published

2022-12-28

How to Cite

[1]
E. Enkhmaa, B. Ulam-Urnukh, and Y. Adiya, “Seasonal variation in hematological references range, and some serum chemical parameters of Brandt’s Vole (Lasiopodomys brandtii Radde, 1861)”, Proc. Inst. Biol., vol. 38, no. 1, pp. 43–63, Dec. 2022.

Issue

Section

Articles

Categories