Development of a polymer resin immobilized catalysts for the oxidative transformation of ethylbenzene
DOI:
https://doi.org/10.5564/mjc.v27i55.4288Keywords:
Heterogeneous catalyst, recyclability, chloromethylated polystyrene, ethylbenzene, 2-(2-pyridyl) benzimidazole, oxidants, selectivityAbstract
New copper, manganese and vanadium based heterogeneous catalysts have been developed by the immobilization of pyridyl benzimidazole onto the polymer support. The active catalysts were characterized using CHN, FT-IR, DRS, EPR, AAS and EDX techniques and successfully used for the oxidative transformation of ethyl benzene. Metal loading in mmol per gram of resin in different catalysts was found to be 0.94-1.34. The catalytic potential of the synthesized catalysts was evaluated for the oxidation of ethylbenzene using hydrogen peroxide and tert-butyl hydroperoxide as oxidant with undiminished efficiency profiles and good reusability (up to four cycles). Notably, no metal contamination in the final products was observed. The comparative evaluation revealed that the highest percentage conversion (82.8 %) and highest selectivity (82.5) for benzaldehyde formation was attained with manganese as catalyst using H2O2 as an oxidant. The mechanism of the oxidation of ethylbenzene in the presence of catalyst has also been proposed. The developed catalytic systems are operationally simple and environmentally clean.
Downloads
17
References
1. Rahman, M.M., Ara, M.G., Rahman, M.S., Uddin, M.S., Bin-Jumah, M.N., Abdel-Daim, M.M. (2020). Recent development of catalytic materials for ethylbenzene oxidation. Journal of Nanomaterials, 1, 7532767. https://doi.org/10.1155/2020/7532767
2. Bäckvall, J.E. (Ed.). (2011). Modern oxidation methods. John Wiley & Sons.
3. He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., Hao, Z. (2019). Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chemical reviews, 119(7), 4471-4568. https://doi.org/10.1021/acs.chemrev.8b00408
4. Poovan, F., Chandrashekhar, V.G., Natte, K., Jagadeesh, R.V. (2022). Synergy between homogeneous and heterogeneous catalysis. Catalysis Science & Technology, 12(22), 6623. https://doi.org/10.1039/D2CY00232A
5. Khokhar, D., Kour, M., Phul, R., Sharma, A.K., Jadoun, S. (2024). Polystyrene-supported Catalysts. In Polymer Supported Organic Catalysts, CRC Pres, pp. 89-100.
6. Kumari, S., Kumar, S., Karan, R., Bhatia, R., Kumar, A., Rawal, R.K., Gupta, P.K. (2024). Synthetic and catalytic perspectives of polystyrene supported metal catalyst. Journal of the Iranian Chemical Society, 21(4), 951. https://doi.org/10.1007/s13738-024-02970-7
7. Kargar, H., Moghadam, M., Shariati, L., Feizi, N. (2022). Novel oxo–peroxo W (VI) Schiff base complex: Synthesis, SC-XRD, spectral characterization, supporting on chloromethylated polystyrene, and catalytic oxidation of sulfides. Journal of the Iranian Chemical Society, 19(7), 3067-3077. https://doi.org/10.1007/s13738-022-02517-8
8. Maurya, M.R., Patter, A., Chauhan, A., Kumar, N. (2024). Dioxidomolybdenum
(VI) Complex Supported on Chloromethylated Polymer and Its Catalytic Role in Peroxidase Mimicking Activity Towards Oxidation of Dopamine. Topics in Catalysis, 67(5), 466-482. https://doi.org/10.1007/s11244-023-01861-0
9. Sharma, A.S., Sharma, V.S., Yadav, P., Kaur, H., Varma, R.S. (2023). Polystyrene Resins: Versatile and Economical Support for Heterogeneous Nanocatalysts in Sustainable Organic Reactions. ChemCatChem, 15(8), e202201493. https://doi.org/10.1002/cctc.202201493
10. Chakravarthy, A.J., Madhura, M.J., Gayathri, V. (2024). A Novel Polymer Supported Copper (II) Complex as Reusable Catalyst in Oxidative Esterification. Catalysis Letters, 154(2), 725. https://doi.org/10.1007/s10562-023-04337-8
11. Gautam, P., Shah, J.A., Bhanage, B.M. (2023). Palladium-Catalyzed Carbonylation Reactions in Ionic Liquids. In Encyclopedia of Ionic Liquids (pp. 991-1004). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-33-4221-7_32
12. Dehbanipour, Z., Moghadam, M., Tangestaninejad, S., Mirkhani, V., Mohammadpoor-Baltork, I. (2022). An efficient and selective olefination of aldehydes with ethyl diazoacetate using copper (II) bis-thiazole complex as heterogeneous catalyst. Journal of the Iranian Chemical Society, 19(8), 3371. https://doi.org/10.1007/s13738-022-02530-x
13. Suzuki, N., Watanabe, K., Takahashi, C., Takeoka, Y., Rikukawa, M. (2023). Ruthenium-catalyzed Olefin Metathesis in Water using Thermo-responsive Diblock Copolymer Micelles, Current Organic Chemistry, 27(15), 1347. https://doi.org/10.2174/1385272827666230911115809
14. Bakhvalova, E.S., Pinyukova, A.O., Mikheev, A.V., Demidenko, G.N., Sulman, M. G., Bykov, A.V., Kiwi-Minsker, L. (2021). Noble metal nanoparticles stabilized by hyper-cross-linked polystyrene as effective catalysts in hydrogenation of arenes. Molecules, 26(15), 4687. https://doi.org/10.3390/molecules26154687
15. Rajmane, A., Mahey, J., Kamble, S., Kumbhar, A. (2024). In Situ generated PdNPs immobilized on polystyrene supported DABCO Dicationic ionic liquid: An efficient and reusable catalyst for Suzuki and Heck coupling reactions. J. Organomet. Chem., 1022, 123390. https://doi.org/10.1016/j.jorganchem.2024.123390
16. Chkirate, K., Essassi, E.M. (2022). Pyrazole and benzimidazole derivatives: chelating properties towards metals ions and their applications. Current Organic Chemistry, 26(19), 1735. https://doi.org/10.2174/1385272827666221216110504
17. Singha, D., Halder, S.C., Jana, A.D., Pal, N. (2024). The coordination chemistry and supramolecular interactions of 2-(2′-Pyridyl)imidazole ligand: a comprehensive review with theoretical insight. Reviews in Inorganic Chemistry, 44(2), 231. https://doi.org/10.1515/revic-2023-0016
18. Maurya, M.R., Arya, A., Adao, P., Pessoa, J.C. (2008). Immobilisation of oxovanadium (IV), dioxomolybdenum (VI) and copper (II) complexes on polymers for the oxidation of styrene, cyclohexene and ethylbenzene. Applied Catalysis A: General, 351(2), 239. https://doi.org/10.1016/j.apcata.2008.09.021
19. Renuka Maldepalli, K., Virupaiah, G. (2017). A polymer-anchored cobalt (II) complex as a reusable catalyst for oxidation of benzene, ethylbenzene and cyclohexane. Trans. Met. Chem., 42, 25. https://doi.org/10.1007/s11243-016-0102-z
20. Opgrande, J.L., Dobratz, C.J., Brown, E., Liang, J., Conn, G.S., Shelton, F.J., With, J. (2000). Benzaldehyde. Kirk-Othmer Encyclopedia of Chemical Technology. https://doi.org/10.1002/0471238961.0205142615160718.a01
21. Zubkov, F.I., Kouznetsov, V.V. (2023). Traveling across life sciences with acetophenone a simple ketone that has special multipurpose missions. Molecules, 28(1), 370. https://doi.org/10.3390/molecules28010370
22. Cook, S. D. (2019). An historical review of phenylacetic acid. Plant and Cell Physiology, 60(2), 243. https://doi.org/10.1093/pcp/pcz004
23. Khalil M. M. H. (2000). M(CO)4[2-(2’-pyridyl) benzimidazole] complexes; M = Mo or W. Trans. Met. Chem., 25(3), 358–360. https://doi:10.1023/a:1007001003628
24. Tuna M., Ugur T. (2022), Synthesis of novel of Mn (II), Co (II), and Cu (II) Schiff base complexes and their high catalytic effect on bleaching performance with H2O2, J. Mol. Struct. 1265, 133348. https://doi.org/10.1016/j.molstruc.2022.133348
25. Sharma B. P., Subin J. A., Marasini B. P., Adhikari R., Pandey S. K., Sharma M. L., (2023) Triazole based Schiff bases and their oxovanadium(IV) complexes: Synthesis, characterization, antibacterial assay, and computational assessments. HeliyonI. 9(4), 1. https://doi.org/10.1016/j.heliyon.2023.e15239
26. Singh V. P., Singh S., Katiyar A. (2009). Synthesis, physico-chemical studies of manganese (II), cobalt (II), nickel (II), copper (II) and zinc (II) complexes with some p-substituted acetophenone benzoylhydrazones and their antimicrobial activity. J. Enzyme Inhib. Med. Chem, 24(2), 577. https://doi:10.1080/14756360802318662
27. Sahani M.K., Yadava U., Pandey O.P., Sengupta S.K. (2014) Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 189. https://doi:10.1016/j.saa.2014.01.041
28. Renuka, M.K., Gayathri, V. (2019) Oxidation of Benzyl Alcohols by Polymer Supported V(IV) Complex Using O2. Catal. Lett. 149, 1266–1276. https://doi.org/10.1007/s10562-019-02710-0
29. Lupașcu G., Pahonțu E., Shova S., Bărbuceanu, Ștefania F., Badea M., Paraschivescu C., DinuPîrvu C. E., (2021). Co (II), Cu (II), Mn (II), Ni (II), Pd (II), and Pt (II) complexes of bidentate Schiff base ligand: Synthesis, crystal structure, and acute toxicity evaluation. Appl. Organomet. Chem., 35(4), 1. https://doi.org/10.1002/aoc.6149
30. Chandra S., Gupta L.K., (2004) EPR, IR and electronic spectral studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with a new 22-membered azamacrocyclic [N4] ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60(8-9), 1751-1761. https://doi.org/10.1016/j.saa.2003.07.011
31. Singh Y.P., Patel R.N., Singh Y., Butcher R.J., Vishakarma P.K., Singh R.K.B. (2016). Structure and antioxidant superoxide dismutase activity of copper (II) hydrazone complexes, Polyhedron. 122(28), 1-15. http://dx.doi.org/10.1016/j.poly.2016.11.013
32. Krzystek, J., Ozarowski, A., Telser, J., & Crans, D.C. (2015). High-frequency and -field electron paramagnetic resonance of vanadium (IV, III, and II) complexes. Coord. Chem. Rev., 301-302, 123–133. https://doi:10.1016/j.ccr.2014.10.014
33. Mahboubi-Anarjan P., Bikas R., Hosseini-Monfared H., Aleshkevych P., Mayer P. (2017) Synthesis, characterization, EPR spectroscopy and catalytic activity of a new oxidovanadium (IV) complex with N2O2-donor ligand. J. Mol. Struct. 1131 258-265. https://doi.org/10.1016/j.molstruc.2016.11.059
34. Hachuła, B., Pędras, M., Nowak, M., Kusz, J., Skrzypek, D., Borek, J., Pentak, D. (2009). Synthesis, crystal structure, spectroscopic, and magnetic properties of a manganese (II) methoxyacetate complex [Mn(C6O6H10)(H2O)]n. J. Coord. Chem., 63(1), 67. https://doi:10.1080/00958970903315535
35. Ali I.O., Nassar H.S., El-Nasser K.S., Bougarech A., Abid, M., Elhenawy, A.A., (2021) Synthesis and characterization of Mn (II) and Co(II) complexes with poly(vinyl alcohol-nicotinic acid) for photocatalytic degradation of Indigo carmine dye. Inorg Chem Commun. 124, 108360. https://doi.org/10.1016/j.inoche.2020.108360
36. Azeez M.O., Nafiu S.A., Olarewaju T.A., Olabintan A.B., Tanimu A., Gambo Y., Aitani A. (2023). Selective Catalytic Oxidation of Ethylbenzene to Acetophenone: A Review of Catalyst Systems and Reaction Mechanisms. Ind. Eng. Chem. Res., 62(33), 1. https://doi.org/10.1021/acs.iecr.3c01588
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Mr. Sunil, PRAVEEN KUMAR GUPTA, Dr. AMIT KUMAR, Dr. RAMESH KUMAR

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.

Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.