Enhanced Energy Storage: Electrochemical Performance of ZnCl<sub>2</sub>-Activated Carbon Derived from Acacia catechu Bark

Authors

  • Pawan Kumar Mishra Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal
  • Sabin Aryal Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44600, Nepal
  • Hari Bhakta Oli Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44600, Nepal
  • Timila Shrestha Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44600, Nepal
  • Md Al Mamun Department of atomic energy center, Materials science Division, Dhaka, Bangladesh
  • Ram Lal Swagat Shrestha Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44600, Nepal
  • Deval Prasad Bhattarai Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44600, Nepal https://orcid.org/0000-0002-2900-7674

DOI:

https://doi.org/10.5564/mjc.v25i52.3501

Keywords:

Acacia catechu bark, activated carbon, bio-waste, ZnCl2, supercapacitor

Abstract

In this study, Acacia catechu bark is used for the development of advanced supercapacitor negatrode materials through the synthesis of activated carbon via activation and carbonization at varying temperatures (400, 600, 800 °C) using ZnCl2 as the activating agent. The as-prepared sample is characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) techniques. The specific surface area was evaluated using BET analysis, while 3D morphological assembly of the resulting material was assessed by means of the Field Emission Scanning Electron Microscopy. Cyclic voltammetry, galvanostatic charging and discharging, electrochemical impedance, were conducted to evaluate the material's electrochemical performance. The activated carbon prepared at 800°C (BZAC-8) exhibited a specific capacitance of 259.34 F g-1 at a current density of 1 A g-1 with excellent capacity retention (92.61%) and lower impedance. These findings underscore the potential of utilizing Acacia catechu bark-based active carbon as a negatrode material for advanced energy storing application.

Downloads

Download data is not yet available.
Abstract
185
PDF
137

Author Biography

Pawan Kumar Mishra, Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal

Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44600, Nepal

Central Department of Chemistry, Kirtipur, Tribhuvan University, Kathmandu 44600 Nepa

References

1. Park S., Song J., Lee W.C., Jang S., Lee J., et al. (2023) Advances in biomass-derived electrode materials for energy storage and circular carbon economy. Chem. Eng. J., 470, 144234. https://doi.org/10.1016/j.cej.2023.144234

2. Gogotsi Y., Patrice S. (2008) Materials for electrochemical capacitors. Nat. Mater., 7, 845-54. https://doi.org/10.1038/nmat2297

3. Simon P., Gogotsi Y., Dunn B. (2014) Where do batteries end and supercapacitors begin ? Science 343, 1210-1. https://doi.org/10.1126/science.1249625

4. Awasthi G.P., Bhattarai D.P., Maharjan B., Kim K.S., Park CH., Kim C.S. (2019) Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications. J. Ind. Eng. Chem., 72, 265-72. https://doi.org/10.1016/j.jiec.2018.12.027

5. Shrestha K.R., Kandula S., Rajeshkhanna G., Srivastava M., Kim NH., Lee JH. (2018) An advanced sandwich-type architecture of MnCo2O4@N-C@MnO2 as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor. J. Mater. Chem. A, 6, 24509-22. https://doi.org/10.1039/c8ta08976k

6. Muzaffar A., Ahamed M.B., Deshmukh K., Thirumalai J. (2019) A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev., 101, 123-45. https://doi.org/10.1016/j.rser.2018.10.026

7. Rawat S., Mishra R.K., Bhaskar T. (2022) Biomass derived functional carbon materials for supercapacitor applications. Chemosphere, 286, 131961. https://doi.org/10.1016/j.chemosphere.2021.131961

8. Chen X., Paul R., Dai L. (2017) Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev., 4, 453-89. https://doi.org/10.1093/nsr/nwx009

9. Conway B.E., Pell W.G, (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem., 7, 637-44. https://doi.org/10.1007/s10008-003-0395-7

10. Dhakal G., Kumar D.R., Sahoo S., Shim J. (2003) Litchi seed biowaste-derived activated carbon supporting matrix for efficient symmetric and asymmetric supercapacitors. Carbon, 208, 277-89. https://doi.org/10.1016/j.carbon.2023.03.045

11. Kar K.K. (2020) Handbook of nanocomposite supercapacitor materials. I, 300 https://doi.org/10.1007/978-3-030-43009-2_13

12. Shrestha R.L., Chaudhary R., Shrestha T., Tamrakar BM., Shrestha R.G., et al. (2020) Nanoarchitectonics of Lotus seed derived nanoporous carbon materials for supercapacitor applications. Materials, 13, 5434. https://doi:10.3390/ma13235434

13. Mishra P.K., Shrestha K.R., Oli H.B., Shrestha T., Joshi L.P., et al. (2024) High-performance porous activated carbon derived from Acacia catechu bark as nanoarchitectonics material for supercapacitor applications. J. Taiwan. Inst Chem. Eng., 165, 105761. https://doi.org/10.1016/j.jtice.2024.105761

14. Xu Y., Lei H., Qi S., Ren F., Peng H., Wang F., et al. (2020) Three-dimensional zanthoxylum Leaves-Derived nitrogen-Doped porous carbon frameworks for aqueous supercapacitor with high specific energy. J. Energy Storage, 32. https://doi.org/10.1016/j.est.2020.101970

15. Wang Y., Qu Q., Gao S., Tang G., Liu K., He S., et al. (2019) Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 155, 706-26. https://doi.org/10.1016/j.carbon.2019.09.018

16. Brandão A.T.S.C., State S., Costa R., Potorac P., Vázquez J.A., et al. (2023) Renewable carbon materials as electrodes for high-performance supercapacitors: From marine biowaste to high specific surface area porous biocarbons. ACS Omega, 8, 18782-98. https://doi.org/10.1021/acsomega.3c00816

17. Khan A., Arumugam S.R., Pan J., Sun Y., Liu X. (2020) Hierarchically porous biomass carbon derived from natural withered rose flowers as high-performance material for advanced supercapacitors. Batter Supercaps, 3, 731-7. https://doi.org/10.1002/batt.202000046

18. Kunwar R.M., Shrestha K.P., Bussmann R.W. (2010) Traditional herbal medicine in Far-west Nepal: A pharmacological appraisal. J. Ethnobiol. Ethnomed., 6, 35. https://doi.org/10.1186/1746-4269-6-35

19. Adhikari B., Aryal B., Bhattarai B.R. (2021) A Comprehensive review on the chemical composition and pharmacological activities of Acacia catechu (L.f.) Willd. J. Chem., https://doi.org/10.1155/2021/2575598

20. Gnawali C.L., Shrestha L.K., Hill J.P., Ma R., Ariga K., et al. (2023) Nanoporous activated carbon material from terminalia chebula seed for supercapacitor application. C-Journal Carbon Res., 9. https://doi.org/10.3390/c9040109

21. Li B., Hu J., Xiong H., Xiao Y. (2020) Application and properties of microporous carbons activated by ZnCl2: Adsorption behavior and activation mechanism. ACS Omega, 5, 9398-407. https://doi.org/10.1021/acsomega.0c00461

22. Farma R., Julita R.I., Apriyani I., Awitdrus A., Taer E. (2023) ZnCl2-assisted synthesis of coffee bean bagasse-based activated carbon as a stable material for high-performance supercapacitors. Mater. Today Proc., 87, 25-31. https://doi.org/10.1016/j.matpr.2023.01.370

23. Altuntaş B.D,, Nevruzoğlu V., Dokumacı M., Cam Ş. (2020) Synthesis and characterization of activated carbon produced from waste human hair mass using chemical activation. Carbon Lett., 30, 307-13. https://doi.org/10.1007/s42823-019-00099-9

24. Köse K.Ö., Pişkin B., Aydınol M.K. (2018) Chemical and structural optimization of ZnCl2 activated carbons via high temperature CO2 treatment for EDLC applications. Int. J. Hydrogen Energy, 43, 18607-16. https://doi.org/10.1016/j.ijhydene.2018.03.222

25. Bosch D., Back J.O., Gurtner D., Giberti S., Hofmann A., Bockreis A. (2022) Alternative feedstock for the production of activated carbon with ZnCl2: Forestry residue biomass and waste wood. Carbon Resour. Convers., 5, 299-309. https://doi.org/10.1016/j.crcon.2022.09.001

26. Liu S., Dong K., Guo F., Wang J., Tang B., et al. (2024) Facile and green synthesis of biomass-derived N, O-doped hierarchical porous carbons for high-performance supercapacitor application. J. Anal. Appl. Pyrolysis, 177, 106278. https://doi.org/10.1016/j.jaap.2023.106278

27. Ţucureanu V., Matei A., Avram A.M. (2016) FTIR Spectroscopy for carbon family study. Crit. Rev. Anal. Chem., 46, 502-20. https://doi.org/10.1080/10408347.2016.1157013

28. Setyaningrum D.L., Riyanto S., Rohman A. (2013) Analysis of corn and soybean oils in red fruit oil using FTIR spectroscopy in combination with partial least square. Int. Food Res. J., 20, 1977-81.

29. Wu H.Y., Chen S.S., Liao W., Wang W., Jang M.F., et al. (2020) Assessment of agricultural waste-derived activated carbon in multiple applications. Environ. Res., 191, 110176. https://doi.org/10.1016/j.envres.2020.110176

30. Shrestha D., Maensiri S., Wongpratat U., Lee S.W., Nyachhyon A.R. (2019) Shorea robusta derived activated carbon decorated with manganese dioxide hybrid composite for improved capacitive behaviors. J. Environ. Chem. Eng., 7, 103227. https://doi.org/10.1016/j.jece.2019.103227

31. Adhikari S., Subedi K., Dhungana S., Arhyal R.L., Paudyal H., et al. Chemical modification of banana peels and banana pseudostem for the adsorptive removal of chromium (VI) from aqueous solution. J. Nepal. Chem. Soc., 43, 23-33. https://doi.org/10.3126/jncs.v43i2.53338

32. Wang J., Nie P., Ding B., Dong S., Hao X., Dou H., et al. (2017) Biomass derived carbon for energy storage devices. J. Mater. Chem. A, 5, 2411-28. https://doi.org/10.1039/c6ta08742f

33. Escribano R., Sloan J.J., Siddique N., Sze N., Dudev T. (2001) Raman spectroscopy of carbon-containing particles. Vib. Spectrosc., 26, 179-86. https://doi.org/10.1016/S0924-2031(01)00106-0

34. López-Díaz D., Delgado-Notario J.A., Clericò V., Diez E., Merchán M.D., Velázquez M.M. (2020) Towards understanding the Raman spectrum of graphene oxide: The effect of the chemical composition. Coatings, 10, 1-12. https://doi.org/10.3390/COATINGS10060524

35. Dhakal G., Mohapatra D., Kim Y.Il., Lee J., Kim W.K., et al. (2022) High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste. Renew. Energy, 189, 587-600. https://doi.org/10.1016/j.renene.2022.01.105

36. Dhakal G., Kumar D.R., Sahoo S., Shim J.J. (2023) Litchi seed biowaste-derived activated carbon supporting matrix for efficient symmetric and asymmetric supercapacitors. Carbon, 208, 277-89. https://doi.org/10.1016/j.carbon.2023.03.045

37. Yang V., Senthil R.A., Pan J., Khan A., Osman S., et al. (2019) Highly ordered hierarchical porous carbon derived from biomass waste mangosteen peel as superior cathode material for high performance supercapacitor. J. Electroanal. Chem., 855, 113616. https://doi.org/10.1016/j.jelechem.2019.113616

38. Jung S.H., Myung Y., Kim B.N., Kim I.G., You I.K. (2018) Activated biomass-derived graphene-based carbons for supercapacitors with high energy and power density. Sci. Rep., 8, 1-8. https://doi.org/10.1038/s41598-018-20096-8

39. Zardkhoshoui A.M., Ashtiani M.M., Sarparast M., Hosseiny D.S.S. (2020) Enhanced the energy density of supercapacitors via rose-like nanoporous ZnGa2S4 hollow spheres cathode and yolk-shell FeP hollow spheres anode. J. Power Sources, 450, 227691. https://doi.org/10.1016/j.jpowsour.2019.227691

40. Sun T., Liu Y., Xu D., Xu G., Ding Y., et al. (2023) Boosting supercapacitor performance through the facile synthesis of boron and nitrogen co-doped resin-derived carbon electrode material. Diam. Relat. Mater., 138, 110258. https://doi.org/10.1016/j.diamond.2023.110258

41. Cai P., Zou K., Deng X., Wang B., Zou G. (2020) Defect rich hierarchical porous carbon for high power supercapacitors, Frontiers in Chemistry, 8, 1–11. https://doi.org/10.3389/fchem.2020.00043

42. Chae J. S, Kang W.S., Roh K.C. (2021) Sp2–sp3 hybrid porous carbon materials applied for supercapacitors. Energies, 14, 1-9. https://doi.org/10.3390/en14195990

43. Dodevski V., Janković B., Stojmenović M., Krstić S., Popović J., et al. (2017) Plane tree seed biomass used for preparation of activated carbons (AC) derived from pyrolysis. Modeling the Activation Process. 522. https://doi.org/10.1016/j.colsurfa.2017.03.003

44. Abdel Maksoud M.I.A., Fahim R.A., Shalan A.E., Elkodous A.M., Olojede S.O., et al. (2020) Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Springer International Publishing, 19. https://doi.org/10.1007/s10311-020-01075-w

45. Jiao S., Yao Y., Zhang J., Zhang L., Li C., et al. (2023) Nano-flower-like porous carbon derived from soybean straw for efficient N-S co-doped supercapacitors by coupling in-situ heteroatom doping with green activation method. Appl. Surf. Sci., 615, 156365. https://doi.org/10.1016/j.apsusc.2023.156365

46. Zhou Y., Li J., Hu S., Qian G., Shi J., et al. (2022) Sawdust-derived activated carbon with hierarchical pores for high-performance symmetric supercapacitors. Nanomaterials, 12, 810. https://doi.org/10.3390/nano12050810

47. Lobato-Peralta D.R., Ayala-Cortés A., Longoria A., Pacheco-Catalán D.E., Okoye P.U., et al. (2022) Activated carbons obtained by environmentally friendly activation using solar energy for their use in neutral electrolyte supercapacitors. Journal of Energy Storage, 52. https://doi.org/10.1016/j.est.2022.104888

48. Zhang J., Gong L., Sun K., Jiang J., Zhang X. (2012) Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J. Solid State Electrochem., 16, 2179-86. https://doi.org/10.1007/s10008-012-1639-1

49. Ma G., Yang Q., Sun K., Peng H., Ran F., et al. (2015) Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresource Technology, 197, 137-42. https://doi.org/10.1016/j.biortech.2015.07.100

Downloads

Published

2024-12-27

How to Cite

Mishra, P., Aryal, S., Oli, H., Shrestha, T., Mamun, M. A., Shrestha, R. L. S., & Bhattarai, D. (2024). Enhanced Energy Storage: Electrochemical Performance of ZnCl<sub>2</sub>-Activated Carbon Derived from Acacia catechu Bark. Mongolian Journal of Chemistry, 25(52), 26–34. https://doi.org/10.5564/mjc.v25i52.3501

Issue

Section

Articles