Zircon U–Pb geochronology and geochemistry of granitic rocks in central Mongolia


  • Boldbaatar Dolzodmaa Graduate School of Integrated Sciences for Global Society, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
  • Yasuhito Osanai Division of Earth Sciences, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
  • Nobuhiko Nakano Division of Earth Sciences, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
  • Tatsuro Adachi Division of Earth Sciences, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan




I-type granite, adakite, A-type granite, Central Asian Orogenic Belt


The Central Asian Orogenic Belt had been formed by amalgamation of voluminous subduction–accretionary complexes during the Late Neoproterozoic to the Mesozoic period. Mongolia is situated in the center of this belt. This study presents new zircon U–Pb geochronological, whole-rock major and trace element data for granitoids within central Mongolia and discusses the tectonic setting and evolution of these granitic magmas during their formation and emplacement. The zircon U–Pb ages indicate that the magmatism can be divided into three stages: the 564–532 Ma Baidrag granitoids, the 269–248 and 238–237 Ma Khangai granitoids. The 564–532 Ma Baidrag granitoids are adakitic, have an I-type affinity, and were emplaced into metamorphic rocks. In comparison, the 269–248 Ma granitoids have high-K, calc-alkaline, granodioritic compositions and are I-type granites, whereas the associated the 238–237 Ma granites have an A-type affinity. The 564–532 Ma Baidrag and 269–248 Ma Khangai granitoids also both have volcanic arc-type affinities, whereas the 238–237 Ma granites formed in a post-collisional tectonic setting. These geochronological and geochemical results suggest that arc magmatism occurred at the 564–532 Ma which might be the oldest magmatic activity in central Mongolia. Between the Baidrag and the Khangai, there might be paleo-ocean and the oceanic plate subducted beneath the Khangai and produced voluminous granite bodies during the 269–248 Ma. After the closure of the paleo-ocean, the post collisional granitoids were formed at the 238–237 Ma based on the result of later granitoids in the Khangai area.


Download data is not yet available.
PDF 392


Adachi, T., Osanai, Y., Nakano, N., Owada, M., Satish-Kumar, M., Jargalan, S., Boldbaatar, Ch., Yonemura, K., Yoshimoto, A. 2012a. Petrology and geochronology of metamorphic rocks in the Bayankhongor area, the central part of Mongolia. Abstract of Japan Geoscience Union Meeting 2012 (20 to 25th of May), SMP46-P07.

Adachi, T., Osanai, Y., Nakano, N., Owada, M. 2012b. LA-ICP-MS U-Pb zircon and FEEPMA U-Th-Pb monazite dating of pelitic granulites from the Mt. Ukidake area, Sefuri Mountains, northern Kyushu. Journal of Geological Society, Japan, v. 118, p. 39-52. https://doi.org/10.5575/geosoc.2011.0022

Arth, J.G. 1976. Behaviour of trace elements during magmatic processes: a summary of theoretical models and their applications. Journal of Research of the U.S. Geological Survey, v. 4, p. 41-47.

Badarch, G., Cunningham, W.D., Windley, B.F. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, v. 21, p. 87-104. https://doi.org/10.1016/S1367-9120(02)00017-2

Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C. 2003. TEMORA1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, v. 200, p. 155-170. https://doi.org/10.1016/S0009-2541(03)00165-7

Bonin, B. 1990. From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geological Journal, W.S. Pitcher Special Issue, v. 25, p. 261-270. https://doi.org/10.1002/gj.3350250309

Bonin, B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, v. 97(1-2), p. 1-29. https://doi.org/10.1016/j.lithos.2006.12.007

Buchan, C., Pfänder, J., Kröner, A., Brewer, T.S., Tomurtogoo, O., Tomurhuu, D., Windley, B.F. 2002. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: Implications of granite geochronology in the Bayankhongor Ophiolite Zone. Chemical Geology, v. 192(1-2), p. 23-45. https://doi.org/10.1016/S0009-2541(02)00138-9

Castillo, P.R. 2012. Adakite petrogenesis. Lithos, v. 134-135, p. 1-340. https://doi.org/10.1016/j.lithos.2011.09.013

Cecil, M.R., Rothberg, G.I., Ducea, M.N., Saleeby, J.B., Gehrels, G.E. 2012. Magmatic growth and batholitic root development in the northern Sierra Nevada, California. Geosphere, v. 8(3), p. 592-606.

Chappell, B.W., White, A.J.R. 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, v. 48(4), p. 489-500. https://doi.org/10.1046/j.1440-0952.2001.00882.x

Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P. 2003. Atlas of Zircon textures. Reviews in Mineralogy and Geochemistry, v. 53 (1), p. 469-500. https://doi.org/10.2113/0530469

Demoux, A., Kröner, A., Badarch, G., Jian, P., Tomurhuu, D., Wingate, M.T.D. 2009. Zircon Ages from the Baidrag Block and the Bayankhongor Ophiolite Zone: Time Constraints on Late Neoproterozoic to Cambrian Subduction‐and Accretion‐Related Magmatism in Central Mongolia. The Journal of Geology, v. 117(4), p. 377-397. https://doi.org/10.1086/598947

Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., De Waele, B., Presnyakov, S.L. 2012. The Late Triassic Kataev volcanoplutonic association in western Transbaikalia, a fragment of the active continental margin of the Mongol-

Okhotsk Ocean. Russian Geology and Geophysics, v. 53(1), p. 22-36. https://doi.org/10.1016/j.rgg.2011.12.002

Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, v. 347, p. 662-665. https://doi.org/10.1038/347662a0

Drummond, M.S., Defant, M.J., Kepezhinskas, P.K. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh. Earth Sciences, v. 87, p. 205-215. https://doi.org/10.1017/S0263593300006611

Eby, G.N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, v. 20(7), p. 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

Griffin, W.L., Powell, W.J., Pearson, N.J., O'Reilly, S.Y. 2008. GLITTER: Data reduction software for laser ablation ICP-MS. Mineralogical Association of Canada Short Course, Series 40. Appendix A2, p. 308-311.

Harris, N.B.W., Pearce, J.A., Tindle, A.G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, v. 19(1), p. 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04

Jahn, B.M., Capdevila, R., Liu, D., Vernon, A.,Badarch, G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-UlaanBaatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, v. 23(5), p. 629-653. https://doi.org/10.1016/S1367-9120(03)00125-1

Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A. 2004. The application of laser ablation-inductively coupled plasma mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, v. 211, p. 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017

Jian, P., Kröner, A., Windley, B.F., Shi, Y., Zhang, F., Miao, L., Liu, D. 2010. Zircon ages of the Bayankhongorophiolite mélange and associated rocks: Time constraints on Neoproterozoic to Cambrian accretionary and collisional orogenesis in Central Mongolia. Precambrian Research, v. 177(1-2), p. 162-180. https://doi.org/10.1016/j.precamres.2009.11.009

Kay, R.W., Kay, S. Mahlburg., 1991. Creation and destruction of lower continental crust. Geologische Rundschau, v. 80(2), p. 259-278. https://doi.org/10.1007/BF01829365

Kelty, T.K., Yin, A., Dash, B., Gehrels, G.E., Ribeiro, A.E. 2008. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Khangai-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia. Tectonophysics, v. 451(1-4), p. 290-311. https://doi.org/10.1016/j.tecto.2007.11.052

Khishigshuren, S., Ochir, G., Danzan, C. 2012. Origin of the Early Mesozoic Bogd Uul granite pluton, Ulaanbaatar area, Mongolia, Bulletin of Nagoya University Museum, v. 28, p. 45-59.

Kitano, I., Osanai, Y., Nakano, N., Adachi, T., Yoshimoto, A., 2014. Rapid techniques for zircon separation and the application for U-Pb dating. Bulletin of the Graduate School Social and Cultural Studies, Kyushu University, v. 20, p. 1–10. (in Japanese with English abstract).

Kröner, A., Demoux, A., Zack, T., Rojas-Agramonte, Y., Jian, P., Tomurhuu, D., Barth, M. 2011. Zircon ages for a felsic volcanic rock and arc-related early Palaeozoic sediments on the margin of the Baidrag microcontinent, central Asian orogenic belt, Mongolia. Journal of Asian Earth Sciences, v. 42(5), p. 1008-1017. https://doi.org/10.1016/j.jseaes.2010.09.002

Ludwig, K.R. 2008. User's Manual for Isoplot 3.70: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, v. 4, p. 1-77.

Martin, H. 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, v. 46(3), p. 411-29. https://doi.org/10.1016/S0024-4937(98)00076-0

Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D. 2005. An Overview of Adakite, Tonalite-Trondhjemiten-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution.

Lithos, v. 79, p. 1-24. https://doi.org/10.1016/j.lithos.2004.04.048

Moyen, J.F. 2009. High Sr/Y and La/Yb ratios: the meaning of the ''adakitic'' signature. Lithos, v. 112, p. 556-574. https://doi.org/10.1016/j.lithos.2009.04.001

Nakano, N., Osanai, Y., Adachi, T., Yonemura, K., Yoshimoto, A., Setiawan, N. 2012. A rapid technique for quantitative determination of major, trace and rare earth elements in low dilution glass bead using XRF and LA-ICP-MS. Bulletin of Graduate School of Social and Cultural Studies Kyushu University, v. 17, p. 81-94.

Orolmaa, D., Erdenesaihan, G., Borisenko, A.S., Fedoseev, G.S., Babich, V.V., Zhmodik, S.M. 2008. Permian-Triassic granitoid magmatism and metallogeny of the Khangain (central Mongolia). Russian Geology and Geophysics, v. 49(7), p. 534-544. https://doi.org/10.1016/j.rgg.2008.06.008

Paces, J.B., Miller, J.D.J. 1993. U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research, v. 98, p. 13997-14013. https://doi.org/10.1029/93JB01159

Pearce, J.A., Harris, N.B.W., Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v. 25(4), p. 956-983. https://doi.org/10.1093/petrology/25.4.956

Purevjav, N., Roser, B. 2012. Geochemistry of Devonian-Carboniferous clastic sediments of the Tsetserlegterrane, Khangai Basin, Central Mongolia: Provenance, source weathering, and tectonic setting. Island Arc, v. 21(4), p. 270-287. https://doi.org/10.1111/j.1440-1738.2012.00821.x

Richards, J.P., Kerrich, R. 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, v. 102, p. 537-576. https://doi.org/10.2113/gsecongeo.102.4.537

Štípská, P., Schulmann, K., Lehmann, J., Corsini, M., Lexa, O., Tomurhuu, D. 2010. Early Camberian eclogites in SW Mongolia: evidence that the Palaeo-Asian Ocean suture extends further east than expected. Journal of Metamorphic Petrology, v. 28, p. 915-933. https://doi.org/10.1111/j.1525-1314.2010.00899.x

Sun, S.S., McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, v. 42, p. 528-548. https://doi.org/10.1144/GSL.SP.1989.042.01.19

Tang, J., Xu, W.L., Wang, F., Zhao, S., Wang, W. 2015. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research, v. 31, p. 218-240. https://doi.org/10.1016/j.gr.2014.12.010

Takahashi, Y., Arakawa, Y., Oyungerel, S., Naito, K. 2000. Geochronological data of granitoids in the Bayankhongor area, central Mongolia. Bulletin of the Geological survey of Japan, v. 51 (5), p. 167-174.

Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Carlton, 312 p.

Tomurtogoo, O., ed. 1998. Geological map of Mongolia: Mineral Resources Authority of Mongolia, Mongolian Academy of Sciences, Ulaanbaatar, scale 1:100,000, CD-ROM (with English summary).

Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, v. 164, p. 31-47. https://doi.org/10.1144/0016-76492006-022

Whalen, J.B., Currie, K.L., Chappell, B.W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, v. 95(4), p. 407-419. https://doi.org/10.1007/BF00402202

Zhang, Y., Sun, M., Yuan, C., Xu, Y., Long, X., Tomurhuu, D., He, B. 2015. Magma mixing origin for high Ba-Sr granitic pluton in the Bayankhongor area, central Mongolia: Response to slab roll-back. Journal of Asian Earth Sciences, v. 113, p. 353-368. https://doi.org/10.1016/j.jseaes.2014.11.029

Zorin, Y.A. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal (Russia) and Mongolia. Tectonophysics, v. 306, p. 33-56. https://doi.org/10.1016/S0040-1951(99)00042-6




How to Cite

Dolzodmaa, B., Osanai, Y., Nakano, N., & Adachi, T. (2020). Zircon U–Pb geochronology and geochemistry of granitic rocks in central Mongolia. Mongolian Geoscientist, 50, 23–44. https://doi.org/10.5564/mgs.v50i0.1327