Geochemistry and geochronology of granitoid rocks of the Taatsiin Gol pluton of the Khangai Complex, Central Mongolia

Authors

DOI:

https://doi.org/10.5564/mgs.v26i53.1788

Keywords:

ASTER, Mongol-Okhotsk, subduction, active continental margin

Abstract

The Taatsiin Gol pluton is one of the major constitute the intrusive body of the Khangai Complex, and is composed the first phase of diorite, the second phase of porphyritic granite, biotite-hornblende granite, and granodiorite, and the third phase of biotite granite and alkali granite. This paper presents new geochemical and U-Pb zircon age data from intrusive rocks of the Taatsiin Gol pluton. Geochemical analyses show that the granitoid rocks of the pluton are high-K calc-alkaline, and metaluminous to weakly peraluminous I-type granites, depleted in HFSE such as Nb, Ta, Ti and Y and enriched in LILE such as Rb, Cs, Th, K and LREE, where some variations from early to later phases rock. Zircon U-Pb dating on the biotite granite of the third phase yielded weighted mean ages of 241.4±1.2 Ma and 236.7±1.4 Ma. Based on the new and previous researchers’ age results, the age of the Taatsiin Gol pluton of the Khangai Complex is 256-230 Ma consistent with the late Permian to mid-Triassic time. Although showing variated geochemical features, the rocks of the three phases are all suggested to form at an active continental margin setting, probably related to the southwestward subduction of the Mongol-Okhotsk Ocean plate during the late Permian to mid-Triassic period.

Downloads

Download data is not yet available.
Abstract
61
PDF 41

References

Badarch, G., Cunningham, W.D., Windley, B.F. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, v. 21, p.87-104. https://doi.org/10.1016/S1367-9120(02)00017-2

Barton, M.D., Young, S., 2002. Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin in E.S. Grew, ed., Beryllium: Mineralogy, Petrology and Geochemistry: Reviews in Mineralogy and Geochemistry, v. 50, p. 591-691. https://doi.org/10.2138/rmg.2002.50.14

Dergunov, A.B., Kovalenko, V.V., Ruzhentsev, S.V., Yarmolyuk, V.V. 2001. Tectonics, Magmatism, and Metallogeny of Mongolia, London-New York: Routledge, Taylor and Francis Group, 2001.

Dolzodmaa, B., Osanai, Y., Nakana, N., Adachi, T. 2020. Zircon U-Pb geochronology and geochemistry of granitic rock in central Mongolia. Mongolian Geoscientist, 50 p. 23-44. https://doi.org/10.5564/mgs.v50i0.1327

Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., De Waele, B., Presnyakov, S.L. 2012. The Late Triassic Kataev volcano-plutonic association in western Transbaikalia, a fragment of the active continental margin of the Mongol-Okhotsk Ocean. Russian Geology and Geophysics, v. 53(1), p. 22-36. https://doi.org/10.1016/j.rgg.2011.12.002

Eenjin, G., and Yarmolyuk, V.V. 2017. Problems of age and origin of granitoids in Central Mongolia. Khaguulchin 57, p.62-67 (in Mongolian).

Fedorova, M.E. 1977. Geologicheskoe polozhenie i petrologiya granitoidov Khangaiskogo batolita (Geological Setting and Petrology of Granitoids of the Khangai Batholith), Moscow: Nauka.

Ganbat, A., Tsujimori, T., Miao, L., Safonova, I., Pastor-Galan, D., Anaad, Ch., Baatar, M., Aoki, Sh., Aoki, K., Savinskiy, I., et al., 2021. Late Paleozoic-Early Mesozoic granitoids in the Khangay-Khentey basin, Central Mongolia: Implication for the tectonic evolution of the Mongol-Okhotsk Ocean margin. https://doi.org/10.31223/X57S5D

Jahn, B.M., Capdevila, R., Liu, D.Y., Badarch, G., 2004. Sources of Phanerozoic granitoids in Mongolia: geochimecal and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, v. 23, p. 629-653. https://doi.org/10.1016/S1367-9120(03)00125-1

Kuzmin, M.I., Yarmolyuk, V.V., Kravchinsky, V.A. 2010. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province, Earth Science Review, v. 102, p. 29-59. https://doi.org/10.1016/j.earscirev.2010.06.004

Litvinovsky, B.A., Tsygankov, A.A., Jahn, B.M., Katzir, Y., Be'eri-Shlevin, Y., 2011. Origin and evolution of overlapping calc-alkaline magmas: the late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). Lithos 125, p. 845-874. https://doi.org/10.1016/j.lithos.2011.04.007

Orolmaa, D., Dolzodmaa. B, 2019. Zircon U-Pb geochronology and geochemistry of granitic rock in Khangain. Khaiguulchin, 61, p. 119-130.

Orolmaa, D., Erdenesaihan, G., Borisenko, A.S., Fedoseev, G.S., Babich, V.V., Zhmodik, S.M. 2008. Permian-Triassic granitoid magmatism and metallogeny of the Khangain (central Mongolia). Russian Geology and Geophysics, v. 49(7), p. 534-544. https://doi.org/10.1016/j.rgg.2008.06.008

Orolmaa, D., Erdenesaikhan, G. 2006. To problems of Khangai granitoids. Proceedings of Institute of Geology and Mineral Resources, v. 16, p. 47-70.

Pearce, J.A., Harris, N.B.W., Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v. 25(4), p. 956-983. https://doi.org/10.1093/petrology/25.4.956

Rickwood, P.C 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements: Lithos, 22(4), 247-263. https://doi.org/10.1016/0024-4937(89)90028-5

Rollinson, H.R. 1993. Using Geochemical Data: Evolution, Presentation, Interpretation. Routledge, 384 p.

Sengor, A.M.C., Natal’in, B.A., 1996, Palaeotectonics of Asia: fragments of a synthesis, in Yin, A., Harrison, M., eds., Tectonic evolution of Asia: Cambridge, Cambridge University Press, p. 486–640.

Sun, S.S., McDonough. W.F, 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes in Saunders, A.D., Norry. M.J., (Eds.), Magmatism in Ocean Basin Geological Society of Special Publication, London, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

Takahashi, Y., Arakawa, Y., Oyungerel, S., Naito, K. 2000. Geochronological data of granitoid in the Bayankhongor area, central Mongolia. Bulletin of the Geological Survey of Japan, v. 51 (5), p. 167-174.

Togtokh, D., Gurtsoo, S., Lkhundev, Sh. 1984. Report on geological mapping at the scale 1:200 000 by Gurvansaikhan geological party in L-48-VII, XIV, L-48-XIII, XIX, XX, XXV, XXVI, XXXI, XXXII, K-48-I, II lists. #3912.

Togtokh, J., Sukh-Erdene, D. 2009. Geological mapping and general prospecting at the scale 1:50000 in Mogoit Khairkhan area in 2006-2009. #6070

Tumurchudur, Ch., Ganbat, D., Noosoi, Z. 1990. Report on geological mapping at the scale 1:200 000 by Galuut 2nd geological party. #4415.

Uyakhan, Z. 2016. Report on 1:50000 geological mapping and general prospecting work done in 2013-2016 in the Khukhnuur-50 project area covering Chuluut and Khangai soums of Arkhangai, Gurvanbulag and Jargalant soums of Bayankhongor aimag. Report #8150.

Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, v. 164, p. 31-47. https://doi.org/10.1144/0016-76492006-022

Xiao, W. Sun, M. Santosh, M. 2015. "Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt". Geoscience Frontiers. 6 (2), p. 137-140. https://doi.org/10.1016/j.gsf.2014.11.003

Xiao, W.J., Windley, B.F., Hao, J., Zhai, M.G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt, Tectonics, 22(6), 1069. https://doi.org/10.1029/2002TC001484

Yarmolyuk, V.V., Kovalenko, V.I. 2003a. Batholiths and geodynamics of batholith formation in the Central Asian fold belt, Russian Geology and Geophysics, v. 44(12), p. 1260- 1274.

Yarmolyuk, V.V., Kovalenko, V.I. 2003b. Deep geodynamics and mantle plumes: their role in the formation of the Central Asian Fold Belt, Petrology, v. 11(6), p. 504- 531.

Yarmolyuk, V.V., Kovalenko, V.I., Kozakov, I.K., Sal’nikova, E.B., Bibikova, E.V., Kovach, V.P., Kozlovsky, A.M,. Kotov, A.B., Lebedev, V.I., Eenjin, G., Fugzan, M.M. 2008. The age of the Khangai batholith and the problem of batholith formation in Central Asia. Doklady Earth Sciences, v. 423, p. 1223–1228. https://doi.org/10.1134/S1028334X08080096

Yarmolyuk, V.V., Kozlovsky, A.M., 2013. Age of the Khangai Batholith and the Problems of Polychronous Batholith Formation in Central Asia. V .452(6), p. 646-652. https://doi.org/10.1134/S1028334X13100176

Yarmolyuk, V.V., Kozlovsky, A.M., Sal'nikova, E.B., Kozakov, I.K., Kotov, A.B., Lebedev, V.I., Eenjin, G. 2013a. Age of the Khangai Batholith and Challenge of Polychronic Batholith Formation in Central Asia, Doklady Earth Sciences, v. 452, p. 1001–1007. https://doi.org/10.1134/S1028334X13100176

Yarmolyuk, V.V., Kozlovsky, A.M., Savantenkov. V.M., Kovach, V.P., Kozakov, I.K., Kotov. A.B., Lebedev, V.I., Eenjin, G. 2016. Composition, sources and geodynamic nature of giant batholiths of Central Asia, according to geochemical and Nd isotopic studies of granitoids of the Khangai zonal magmatic area. Petrology, v. 24, p. 433-461. https://doi.org/10.1134/S0869591116050064

Yarmolyuk, V.V., Kuzmin, M.I., Kozlovsky, A.M. 2013b. Late Paleozoic-Early Mesozoic within-plate magmatism in north Asia: traps, rifts, giant batholiths, and the geodynamics of their origin, Petrology, v. 21(2), p. 101-126. https://doi.org/10.1134/S0869591113010062

Zabotkin, L.V., Mosiondz, K.A., Dobrov, G.M. 1988. Report on geological mapping at the scale 1:200 000 in Bayankhongor area (L-47-XII,XXIII,XXIV, XXVIII, XXIX, XXX,XXXIV, XXXV, XXXIV lists). #4276.

Downloads

Published

2021-12-30

How to Cite

Bayasgalan, T., Munkhtsengel, B., Khishigsuren, S., & Khurelbaatar, B. (2021). Geochemistry and geochronology of granitoid rocks of the Taatsiin Gol pluton of the Khangai Complex, Central Mongolia. Mongolian Geoscientist, 26(53), 18–36. https://doi.org/10.5564/mgs.v26i53.1788

Issue

Section

Articles