The feasibility of copper dissolution from the molybdenite concentrate with iron chlorides
DOI:
https://doi.org/10.5564/bicct.v10i10.2598Keywords:
molybdenum disulfide, oxidation, dissolution, chalcopyriteAbstract
In this research work, the copper compound which exists in the form of sulfide in molybdenite concentrate (M1 and M2 samples) dissolved with a mixed solution of iron chlorides (FeCl3 and FeCl2), and it aimed to establish optimum conditions for increasing the content of molybdenum disulfide (MoS2) in the concentrate. The effect of various factors on copper dissolution from each concentrate was investigated and copper leaching in the optimized conditions was determined as 77.62% for sample M1 and 94.84% for sample M2. In addition, when studying the kinetics of copper dissolution in the temperature range of 343-373 K using the shrinking core model, the dissolution process for samples of the M1 and the M2 was controlled by chemical reaction (Ea=44.87 kJ/mol) and by diffusion model (Ea=18.62 kJ/mol), respectively. The content of copper in the solution after leaching was analyzed using ICPOES, and the composition of the solid phase was identified by XRD and SEM analysis. As a result of the experiments, the content of MoS2 in the solid residue increased to 90.10 % (M1 sample) and 88.59% (M2 sample).
Молибденитийн баяжмалаас зэсийг төмрийн хлоридоор уусгах боломж
Хураангуй: Энэхүү судалгааны ажлаар молибденитийн баяжмал (M1, M2)-д агуулагдах сульфидын хэлбэрт байгаа зэсийн
нэгдлийг төмрийн хлоридууд (FeCl3 ба FeCl2)-ын холимог уусмалаар исэлдүүлэн уусгаж, баяжмал дахь молибдений
дисульфид (MoS2)-ын агуулгыг нэмэгдүүлэх зохистой нөхцлийг тогтоохыг зорив. Баяжмал тус бүрээс зэсийг уусгах төрөл
бүрийн хүчин зүйлийн нөлөөллийг судлан, уусгах процессын зохимжтой нөхцөл дэх зэсийн уусалт M1 дээжийн хувьд
77.62%, М2 дээжийн хувьд 94.84% байгааг тогтоосон. Түүнчлэн зэсийн уусалтын кинетикийг 343-373 K температурын
хязгаарт shrinking core загвар ашиглан судлахад зэс уусах процесс М1 дээж (Ea=44.87 кЖ/моль) химийн урвалаар, M2 дээж
(Ea=18.62 кЖ/моль) диффузийн загвараар явагдаж байгааг тогтоов. Уусгалтын дараах уусмал дахь зэсийн агуулгыг ICPOES, хатуу фазын найрлагыг XRD, SEM аргуудаар тодорхойлсон. Туршилтын эцсийн үр дүнд уусгалтын хатуу үлдэгдэл дэх
MoS2-ын агуулга 90.10 % (М1) ба 88.59% (М2) хүртэл нэмэгдсэн.
Түлхүүр үг: молибдений дисульфид, исэлдүүлэлт, уусгалт, халькопирит.
Downloads
134
References
C.K. Gupta (1992). Extractive Metallurgy of Molybdenum. CRC Press, USA.
A.R. Lansdown (1999). Molybdenum Disulphide Lubrication. 1st Ed., Elsevier, Swansea, UK.
O. Samy, A.E. Moutaouakil (2021). A Review on MoS2 Energy Applications: Recent Developments and Challenges. Enenrgies. MDPI. 14(4586):1-20. https://doi.org/10.3390/en14154586
D. Gupta, V. Chauhan, R. Kumar (2020). A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorg. Chem. Commun., l(121):108200. https://10.1016/j.inoche.2020.108200
E.R. Braithwaite, J. Haber (1994). Molybdenum: An Outline of its Chemistry and Uses. v.19. Elsevier Science.
H. Abdollahi, S.Z. Shafaei, M. Noaparast, Z. Manafi (2017). Mixed moderate thermophilic bioleaching of Cu, Mo and Re from molybdenite concentrate: effects of silver ion, medium and energy sources. Int. J. Min. Geo-engineering., 51(2):151-159. https://10.22059/ijmge.2017-220805.594640
S.O. Rastegar, S.M. Mousavi, M.Rezaei, S.A. Shojaosadati (2014). Statistical evaluation and optimization of effective parameters in bioleaching of metals from molybdenite concentrate using Acidianus brierleyi. Ind. Eng. Chem., 20(5):3096-3101. http://dx.doi.org/10.1016/j.jiec.2013.11.049
D. Guo, L. Fu, S. Wang, L. Zhang, J. Peng (2018). Application of Taguchi method for optimization of process parameters in preparation of high-purity molybdenum disulfide. Chem. Pap. 72:2997-3003. https://10.1007/s11696-018-0544-1
M.C. Ruiz, R. Padilla (1998). Copper removal from molybdenite concentrate by sodium dichromate leaching. Hydrometallurgy. 48:313-325. https://doi.org/10.1016/S0304-386X(98)00006-1
R. Padilla, C. Opazo, M.C. Ruiz (2015) Kinetics of Copper Removal from Sulfidized Molybdenite Concentrates by Pressure Leaching. Metall. Mater. Trans. B. 46(1):30-37. https://doi.org/10.1007/s11663-014-0171-3
R. Padilla, H. Letelier, M.C. Ruiz (2013). Kinetics of copper dissolution in the purification of molybdenite concentrates by sulfidation and leaching. Hydrometallurgy. 137:78-83. https://doi.org/10.1016/j.hydromet.2013.05.012
P.H. Jennings, R.H. Stanley, H.L. Ames (1973) Development of a process for purifying molybdenite concentrates. Proceedings of Second International Symposium on Hydrometallurgy. p. 868-883.
A.A. Baba, K.I. Ayinla, F.A. Adekola, M.K. Ghosh, O.S. Ayanda, R.B. Bale, A.R. Sheik, S.R. Pradhan (2012). A Review on Novel Techniques for Chalcopyrite Ore Processing. Int. J. Min. Eng. Miner. Process. 1(1):1-16. https://10.5923/j.mining.20120101.01
M. Nicol, H. Miki, L. Velásquez-Yévenes (2010). The dissolution of chalcopyrite in chloride solutions: Part 3. Mechanisms. Hydrometallurgy. 103(1-4):86-95. https://doi.org/10.1016/j.hydromet.2010.03.003
Y. Li, F. Wang, B. Yang, J. Wu, Y. Tian (2020). Experimental Investigation of Molybdenum Disulfide Purification Through Vacuum Distillation. J. Sustain. Metall. 6(3):419-427. https://doi.org/10.1007/s40831-020-00284-5
N. T. Phuong Thao, S. Tsuji, S. Jeon, I. Park, C.B. Tabelin, N. Hiroyoshi (2020). Redox potential-dependent chalcopyrite leaching in acidic ferric chloride solutions: Leaching experiments. Hydrometallurgy. 194:105299. https://doi.org/10.1016/j.hydromet.2020.105299
J. Lu, D. Dreisinger (2013). Copper leaching from chalcopyrite concentrate in Cu(II)/Fe(III) chloride system. Miner. Eng. 45:185-190. https://doi.org/10.1016/j.mineng.2013.03.007
N. Hiroyoshi, H. Miki, T. Hirajima, M. Tsunekawa (2001). Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy. 60(3):185-197. https://doi.org/10.1016/S0304-386X(00)00155-9
O. Levenspiel (1999). Electrochemical Reaction Engineering, 3rd Ed. John WIley & Sons, New York.
G. P. Demopoulos, Z. Li, L. Becze, G. Moldoveanu, T. Cheng, G. B. Harris (2007). New technologies for HCL regeneration in chloride hydrometallurgy. Proc.-Eur. Metall. Conf. EMC 2007, 1(2):253-272.
M.E. Taboada, P.C. Hernández, A.P. Padilla, N.E. Jamett, T.A. Graber (2021). Effects of Fe+2 and Fe+3 in Pretreatment and Leaching on a Mixed Copper Ore in Chloride Media. Met. MDPI, 11(6):866. https://doi.org/10.3390/met11060866
T. Hidalgo, L. Kuhar, A. Beinlich, A. Putnis (2018). Kinetic study of chalcopyrite dissolution with iron(III) chloride in methanesulfonic acid. Miner. Eng. 125:66–74. https://doi.org/10.1016/j.mineng.2018.05.025
T. Hidalgo, L. Kuhar, A. Beinlich, A. Putnis (2019). Kinetics and mineralogical analysis of copper dissolution from a bornite/chalcopyrite composite sample in ferric-chloride and methanesulfonic-acid solutions. Hydrometallurgy. 188:140-156. https://doi.org/10.1016/j.hydromet.2019.06.009
E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, A. Ballester (2008) Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential. Hydrometallurgy. 93(3-4):88-96. https://doi.org/10.1016/j.hydromet.2008.04.016
T. Havlík (2008) Hydrometallurgy, Principles and application, CRC Press, USA.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Bulletin of the Institute of Chemistry and Chemical Technology, MAS is retained by the author(s).
The authors grant the Bulletin of the Institute of Chemistry and Chemical Technology, MAS a license to publish the article and identify itself as the original publisher.
Articles in the Bulletin of the Institute of Chemistry and Chemical Technology, MAS are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.