The study of adsorption activity of chromium ion (Cr(VI)) in chitosan based new materials

Authors

  • Majigsuren Enkhtuya Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia https://orcid.org/0000-0002-8052-4466
  • Shirendev Nasanjargal Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia
  • Byambasuren Ulziidelger Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia
  • Yunden Ganchimeg Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

DOI:

https://doi.org/10.5564/bicct.v10i10.2595

Keywords:

adsorbent, metal ion, aqueous medium, adsorption capacity

Abstract

In this research work, a new type of absorbent material was obtained using kaolin which is produced by clay of the
"Tsogt-Ovoo" deposit in Umnogovi province. The kaolin was produced by removing its mechanical impurities from clay and
treating it to acid and heat treatment. When producing a chitosan based new absorbent bead, pure chitosan and mixtures of chitosan
and kaolin (8:1, 8:2 and 8:3) with certain ratios were subjected to chemical processing. It was determined that the absorption
capacity of chromium ion (Cr(VI)) was the highest when chitosan and kaolin mass ratio was 8:2. The adsorption activity of Cr(VI)
in chitosan-based adsorbent was studied depending on the pH of the solution, time, temperature, initial concentration of chromium
ion solution and mass of adsorbent material. The degree of absorption was the highest (80.25%) when initial concentration of the
chromium ion solution is 50 mg/l, temperature is 250C, contact time is 3h and the mass of the adsorbent material is 0.1 g. It shows
that this chitosan based adsorbent bead can be used for the separation of chromium (Cr(VI)) from aqueous solutions.

Читосан суурьтай шинэ материалын +6 валенттай хром шингээх идэвхийн судалгаа

Хураангуй: Тус судалгааны ажлын хүрээнд Өмнөговь аймгийн нутагт орших “Цогт-Овоо” ордын шаврын дээжийг механик
хольцоос салган, хүчлийн ба дулааны боловсруулалтад оруулж бэлтгэсэн каолиныг ашиглан шинэ төрлийн шингээгч
материал гарган авав. Читосан суурьтай, үрэл хэлбэрийн шинэ төрлийн шингээгч материалыг гарган авахдаа цэвэр читосан
болон тодорхой харьцаа бүхий читосан ба каолины (8:1, 8:2 ба 8:3) хольцыг химийн боловсруулалтад оруулж гарган авсан.
Туршилтаар 8:2 массын харьцаа бүхий читосан ба каолинын хольцыг ашиглан гарган авсан үрэл хэлбэрийн шингээгч
материалын +6 валенттай хром (Cr(VI)) шингээх шингээлтийн багтаамж хамгийн өндөр болохыг тогтоов. Читосан суурьтай
шинэ төрлийн шингээгч материалын усан уусмалаас Cr(VI) шингээх идэвхийг уусмалын рН, хугацаа, температур, хромын
уусмалын анхны концентраци ба шингээгч материалын массаас хамааруулан судалж үзэхэд уусмалын орчин pH 3,
шингээлтийн хугацаа 3 цаг, шингээлтийн температур T= 25℃, хромын уусмалын анхны концентраци 50 мг/л, шингээгч
материалын масс 0.1 г байх нөхцөлд шингээлтийн зэрэг хамгийн өндөр буюу 80.25% байна. Энэхүү шинэ материалыг усан
уусмалаас хромыг (Cr(VI)) ялгахад ашиглах боломжтой гэж үзэж байна.

Түлхүүр үг: адбсорбент, металлын ион, усан орчин, шингээлтийн багтаамж

Downloads

Download data is not yet available.
Abstract
99
PDF 101

References

Ш.Насанжаргал, Ю.Ганчимэг, Г.Бурмаа, Б.Мөнхпүрэв, Б.Золзаяа, Б.Рэнцэндулам (2020). 3-аминопропилтритоксисиланаар модификацид оруулсан идэвхжүүлсэн нүүрсний хром (VI)-ыг шингээх идэвхийн судалгаа. Эрдэм шинжилгээний бүтээл, 8:42-49. file:///C:/Users/ACER/Downloads/download.pdf

Ш.Насанжаргал, Ю.Ганчимэг, Б.Мөнхпүрэв, Х.Уранбайгаль (2021). Усан орчноос хүнд металлыг модификацид оруулсан цеолитоор ялгах судалгааны дүнгээс. ШУТИС-ийн профессор багш, судлаачдын “Эрдмийн чуулган-2021” хурлын эмхэтгэл. 4:281.

X.Du, C.Kishima, H.Zhang, N.Miyamoto, N.Kano (2020). Japan removal of chromium (VI) by chitosan beads modified wit sodium dodecyl sulfate. Applied Sciences. 10:4745. file:///C:/Users/ACER/Downloads/applsci-10-04745-v2.pdf

M.Nitsae, A.Madjid, L.Hakim, A.Sabarudin (2016). Preparation of chitason beads using tripolyphosphate and ethylene glycol diglycidyl ether as crosslinker for Cr (VI) adsorption. Chemistry and Chemical Technology. 10(1):1-124. https://doi.org/10.23939/chcht10.01.105

G.B.Krishna, S.S.Gupta (2006). Adsorption of chromium (VI) from water by clays. Industrial and Engineering Chemistry Research. 45(21):7232-7240. https://doi.org/10.1021/ie060586j

D.J.Castro-Castro, I.F.Macıas-Quiroga, G.I.Giraldo-Gomez, N.R.Sanabria-Gonzalez (2020). Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. Scientific World Journal. 628163:1-9. https://doi.org/10.1155/2020/3628163

D.M.Liu, C.Dong, B.Xu (2021) Preparation of magnetic kaolin embedded chitason beads for efficient removal of hexavalen chromium from aqueous solution. Journal of Environmental Chemical Engineering. 9(4):105438. https://doi.org/10.1016/j.jece.2021.105438

M.Salam, Y.Munekage (2009). Removal of arsenic from aqueous solution using silica ceramic: Adsorption kinetic and equilibrium studies. International Journal of Environmental Research, 3(1):13-22.

K.M.Khoo, Y.P.Ting (2001). Biosorption of gold by immobilized fungal biomass. Biochemical Engineering Journal. 8(1):51-59. https://doi.org/10.1016/S1369-703X(00)00134-0

Q.I.U.Hui, L.V.Lu, P.A.N.Bing-cai, Q.J.Zhang, W.M.Zhang, Q.X.Zhang (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University Science A, 10(5):716-724. https://doi.org/10.1631/jzus.A0820524

Y.S.Ho, J.F.Porter, G.McKay (2002). Equilibrium isotherm studies for the sorption divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air and Soil Pollution, 141:1-33. https://doi.org/10.1023/A:1021304828010

M.A.González, I.Pavlovic, C.Barriga (2015). Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors. Chemical Engineering Journal, 269:221-228. https://doi.org/10.1016/j.cej.2015.01.094

P.Saha, S.Chowdhury (2011). Insight into adsorption. Thermodynamics. edited by Mizutani Tadashi. ISBN:978-953-307-544-0.

A.Elgamouz, N.TijaniIhsan, I.Shehadi, K.Hasan, M.Al-Farooq Kawam (2019). Characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support. Heliyon. 5(8):105300. https://doi.org/10.1016/j.heliyon.2019.e02281

B.Munkhpurev, Kh.Zoltuya, D.Anak, M.Sari, N.Miyamoto, N.Kano, H.J.Kim, Yu.Ganchimeg (2021). Adsorption of Cr(III) from an aqueous solution by chitosan beads modified with sodium dodecyl sulfate (SDS). Journal of Environmental Protetion, 12(11):939-960. https://doi.org/10.104236/jep.2021.1211055

Downloads

Published

2022-12-27

How to Cite

Enkhtuya, M., Nasanjargal, S., Ulziidelger, B., & Ganchimeg, Y. (2022). The study of adsorption activity of chromium ion (Cr(VI)) in chitosan based new materials. Bulletin of the Institute of Chemistry and Chemical Technology, 10(10), 58–64. https://doi.org/10.5564/bicct.v10i10.2595

Issue

Section

Articles