Optimization of the polysaccharide extraction process from natural raw materials

Authors

  • Damdindorj Mungunnaran Laboratory of Food Chemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Lodonjav Munkhgerel Laboratory of Food Chemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Munkhjargal Odonchimeg Laboratory of Food Chemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Duger Regdel Laboratory of Food Chemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Erdenechimeg Namjil Laboratory of Food Chemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia https://orcid.org/0000-0001-5515-6860

DOI:

https://doi.org/10.5564/bicct.v10i10.1804

Keywords:

conventional methods, arabinogalactan, inulin, glucan polysaccharide

Abstract

Polysaccharides are of great interest to scientists due to their special properties such as non-toxicity, specific physical
and chemical properties, therapeutic effects, biodegradability, and biocompatibility. In recent years, research has been intensively
conducted on the isolation of polysaccharides from natural raw materials by conventional and non-conventional methods, to determine their structure and biological activity for practical application.
In this research, the optimal conditions for extracting arabinogalactan, inulin, and glucan-type polysaccharides from the Siberian
larch (Larix sibirica L.) sawdust, the root of cultivated Jerusalem artichoke (Helianthus tuberosus L.), and Oyster mushroom
(Pleurotus ostreatus) by conventional methods.
The crude polysaccharides were extracted and purified by a re-precipitation method, Sevag reagent, trichloroacetic acid (TCA), and calcium hydroxide, and their physicochemical properties were identified by FT-IR.

Байгалийн гаралтай түүхий эдээс полисахарид ялгах тохиромжтой горим тогтоосон дүнгээс

Хураангуй: Полисахарид нь олон төрлийн эмчилгээний үйлдэл үзүүлдэг, хоргүй, физик химийн өвөрмөц шинж
чанартайгаас гадна организмд амархан задардаг, бионийцтэй тул судлаачдын анхаарлыг ихээр татаж байна. Сүүлийн
жилүүдэд байгалийн гаралтай түүхий эдээс полисахаридыг уламжлалт болон уламжлалт бус аргуудаар ялган, бүтэц
байгууламжийг тодорхойлж, биологийн идэвхийг тогтоох, хэрэглээнд нэвтрүүлэх судалгаа эрчимтэй хийгдэж байна.
Бид энэхүү ажлын хүрээнд Хар модны (Larix sibirica L) хаягдал үртэс, тарималжуулсан Булцуут наранцэцгийн үндэс
(Helianthus tuberosus L), Хясаан дэрвээлж (Pleurotus ostreatus) мөөгнөөс уламжлалт аргаар арабиногалактан, инулин,
глюканы төрлийн полисахарид ялган авах тохиромжтой горимыг тогтоолоо. Ялган авсан полисахаридуудыг дахин
тунадасжуулах арга, Севагийн урвалж, гурванхлорт цууны хүчил, кальцийн гидроксидын уусмал ашиглан бусад хольцоос
цэвэрлэж, шинж чанарыг FT-IR ашиглан тодорхойлов.

Түлхүүр үг: тохиромжтой горим, уламжлалт арга, арабиногалактан, инулин, глюкан полисахарид

Downloads

Download data is not yet available.
Abstract
119
PDF 193

References

Y.Yue, Sh.Mingyue, S.Qianqian, H.Jianhua (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers. 183:91-101. https://doi.org/10.1016/j.carbpol.2017.12.009

R.Chen, S.Li, C.Liu, S.Yang, X.Li (2012). Ultrasound complex enzymes assisted extraction and biochemical activities of polysaccharides from epimedium leaves. Process Biochem. 47(12):2040-2050. https://doi.org/10.1016/j.procbio.2012.07.022

L.Shi (2016). Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. International Journal of Biological Macromolecules. 92:37-48. https://doi.org/10.1016/j.ijbiomac.2016.06.100

X.Ji, B.Peng, H.Ding, B.Cui, H.Nie, Y.Yan (2021). Purification, structure and biological activity of Pumpkin polysaccharides: a review. Food Reviews International. 37(1):1-13. https://doi.org/10.1080/87559129.2021.1904973

W.Zhu, X.Xue, Z.Zhang (2016). Ultrasonic-assisted extraction, structure and antitumor activity of polysaccharide from Polygonum. International Journal of Biological Macromolecules. 91:132-142. https://doi.org/10.1016/j.ijbiomac.2016.05.061

A.D.E.Silva, W.T.de.Magalhaes, L.M.Moreira, M.V.P.Rocha, A.K.P.Bastos (2018). Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry. Algal Research. 35:178–184. https://doi.org/10.1016/j.algal.2018.08.015

M.F.Chaplin, J.F.Kennedy. (1994) Carbohydrate Analysis: A Practical Approach, 2nd ed., Oxford University Press, Oxford.

С.А.Медведева Г.П.Александрова, В.И.Дубровина, Т.Д.Четверикова. (2002). Арабиногалактан лиственницы – перспективная полимерная матрица для биогенных металлов. Butlerov Communications. 7:45-49

P.Odonmazig, A.Ebringerova, E.Machova, J.Alfoldi. (1994). Structural and molecular properties of the arabinogalactan isolated from Mongolian larchwood (Larix dahurica L.). Carbohydrate Resrarch. 252:317-324. https://doi.org/10.1016/0008-6215(94)90028-0

Z.Liu, M.Wei, G.Cui, X.Yang, H.Gu, L.Yang (2018). Optimization of arabinogalactan and taxifolin extraction process from Dahurian larch (Larix gmelinii) and evaluation of the effects on activities of α‐amylase, α‐glycosidase, and pancreatic lipase in vitro. Journal of Food Biochemistry, 42(5):12607. https://doi.org/10.1111/jfbc.12607

J.Wu, Y.Xu, B.Zhu, K.Liu, S.Wang (2020). Characterization of an arabinogalactan from the fruit hulls of Ficus pumila Linn. and its immunomodulatory effect. Journal of Functional Foods. 73:104091 http://doi.org/10.1016/j.jff.2020.104091

М.Н.Назаренко (2014). Совершенствование технологий получения инулина и фруктозо-глюкозного сиропа из топинамбура и их применения в производстве функциональных молочных продуктов. Диссертация на соискание ученой степени кандидата технических наук, Кубанский государственный технологический университет, Краснодар.

L.Wei, J.Wang, X.Zheng, D.Teng, Y.Yang et al (2007). Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. Journal of Food Engineering.79(3):1087-1093. https://doi.org/10.1016/j.jfoodeng.2006.03.028

I.Mironczuk-Chodakowska, K.Kujawowicz, A.M.Witkowska (2021) Beta-Glucans from Fungi: Biological and health-promoting potential in the COVID-19 pandemic era. Nutrients. 13(11):3960. https://doi.org/10.3390/nu13113960

Y.K.Leong, F.C.Yang, J.S.Chang (2020). Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydrate Polymers. 251:117006. https://doi.org/10.1016/j.carbpol.2020.117006.

M.Dubois, K.A.Gilles, J.K.Hamilton, P.A.Rebers, F.Smith (1956). Colorimetric method for determination of sugar and related substances. Analytical Chemistry, 28(3):350-356.

M.Bradfoard (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3

V.L.Singleton, R.Orthofer, R.M.Lamuela-Raventos (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 299:152-78. https://doi.org/10.1016/S0076-6879(99)99017-1

А.О.Арифходжаев (2000). Галактаны и галактансодержащие полисахариды высших растений. Химия природных соединений. 3:185-197.

О.А.Макаренко, А.П.Левицкий (2013). Физиологические функции флавоноидов в растениях. Физиология и Биохимия Культурных Растений. 45(2):100-112.

R.Albarri, S.Sahin (2022). Monitoring the recovery of bioactive molecules from Moringa oleifera leaves: Microwave treatment vs ultrasound treatment. Biomass Conversion and Biorefinery. 2022:1-13. https://doi.org/10.1007/S13399-021-02232-Z

M.G.Rasul (2018). Conventional extraction methods use in medicinal plants, their advantages and disadvantages. International Journal of Basic Sciences and Applied Computing. 2(6):10-14.

Л.С.Васильева, Х.Удвал, И.С.Выборова, Е.В.Рахвалова (2004). Арабиногалактан уменьшает стресс-индуцированную альтерацию печени. Материалы конференции “Современные наукоемкие технологии” 6:82-83.

V.L.Semerikov, M.Lascoux (1999). Genetic relationship among Eurasian and American larix species based on allozymes. Heredity (Edinb) 83(1):62–70. https://doi.org/10.1038/sj.hdy.6885310

A.Gaafar, M.S.El-Din, E.Boudy and H.H.El-Gazar (2010). Extraction conditions of inulin from Jerusalem Artichoke tubers and its effects on blood glucose and lipid profile in diabetic rats. Journal of American Science. 6(5):36-43.

A.Synytsya, K.Míčková, A.Synytsya, I.Jablonský, J.Spěváček, et al (2009). Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers. 76(4):548-556. https://doi.org/10.1016/j.carbpol.2008.11.021

S.M.Colegate, R.J.Molyneux (2007). Bioactive natural products: Detection, isolation, and structural determination. CRC Press, BocaRaton, FL.

M.Grube, M. Bakers, D.Upite, E.Kaminska (2002). Infrared spectra of some fructans. Spectroscopy, 16:289-296. https://doi.org/10.1155/2002/637587

T.V.Barkhatova, M.Nazarenko, M.A.Kozhukhova, I.A.Khripko (2015). Obtaining and identification of inulin from Jerusalem artichoke (Helianthus tuberosus) tubers. Foods and Raw Materials, 3(2):13–22. https://doi.org/10.12737/13115.

N.Erdenechimeg, G.Oyundari, B.Orgilmaa, B.Munkhtsetseg, B.Bayarmaa (2021). The Possibility of obtaining inulin from the tubers of Helianthus tuberosus L and Inula helenium L. Mongolian Journal of Agricultural Sciences. 31(3):174-179. https://doi.org/10.5564/mjas.v31i3.1552

A.S.Ali, A.H.Noora, M.K.Hadeel (2020). Antitumor activity of β-glucan extracted from Pleurotus eryngii. Indian Journal of Forensic Medicine and Toxicology. 14(3):2493-2499. https://doi.org/10.37506/ijfmt.v14i3.10811

Downloads

Published

2022-12-27

How to Cite

Mungunnaran, D., Munkhgerel, L., Odonchimeg, M., Regdel, D., & Namjil, E. (2022). Optimization of the polysaccharide extraction process from natural raw materials. Bulletin of the Institute of Chemistry and Chemical Technology, 10(10), 17–23. https://doi.org/10.5564/bicct.v10i10.1804

Issue

Section

Articles