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Abstract: In this work, high-energy positive charged particles are distinguished using the 
Lobachevsky space or Hyperbolic space, which is defined as the total rapidity multiplied by 
hyperbolic cosines of the transverse and longitudinal rapidity of the particles. Experimental data from 
eight different types of interactions detected in the bubble chambers accumulated in the high-energy 
sector were used in the calculations. The weights used to construct the proton and positive pion 
distributions for each of the interacting secondary particles have been eliminated, allowing such 
studies to be performed such as particle counting and clustering.These weights do not include 
calculated weights at azimuth angles, near the center of the star, or without momentum measurements. 
We now have the opportunity to study positive pions and protons. The percentage of confused 
particles increases with the beam energy.  
 After the reconstruction, we conducted a study of the temperature of the charged particles 
produced by the p + p interaction of 205 GeV, where Tsallis temperatures are close to Hagedorn 𝑇𝑇1. 
On the other hand, Hagedor 𝑇𝑇2 and 𝑇𝑇0 temperatures are higher than Tsallis, which means that the 
unstable states exchange heat as they move to equilibrium. 
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INTRODUCTION 

 
The interaction of collision’s reaction can 

be formulated in two ways: 
The form noted in the most studies is I 

(projectile) + II (target)→ c + X, where c is the 
newly produced particles and the uninteracted 
fragments from the target and projectile 
nucleus. X is a particle that is not detected in the 
detector. Alternatively, 1 (projectile) + 2 
(target)→ 3 + X, where 3 is the same as c from 
the previous reaction. 

When studying the interaction process of 
elementary particles, there are many advantages 
in solving all problems by simultaneously 
studying the onward and transverse directions 
of the movement. For example, Lobachevsky's 
geometry [1, 2], or the so-called "total rapidity" 
quantity applied to the rapidity space, calculates 
the above-mentioned two directions 
simultaneously.
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This geometry is represented by the 
following multiplication: 

𝑐𝑐ℎ(𝜌𝜌) = 𝑐𝑐ℎ(𝜏𝜏)𝑐𝑐ℎ(𝑦𝑦)                (1) 
Where 𝑦𝑦 is the rapidity in the onward 

direction, which is defined according to the 

formula 𝑦𝑦 = 0.5 ∗ log �𝐸𝐸+𝑝𝑝||

𝐸𝐸−𝑝𝑝||
� , but transverse 

direction is defined as 𝜏𝜏 = 𝑚𝑚𝑇𝑇/𝑚𝑚. E, 𝑝𝑝||, 𝑚𝑚𝑇𝑇 
and m are the constituents according to the total 
energy, the longitudinal momentum, the 
transverse mass and m is the rest mass of the 
particle. 

In the work [2], we kept the expression 
𝜌𝜌23 as is in terms of the second law of the 
collision reaction in order to distinguish the 
quantity ρ from the density notation. We have 
previously distinguished positive pion loss 
within protons at 10 GeV proton-carbon and 4.2 
GeV per nucleon carbon-carbon interactions, 
and have collected experimental data using the 
above space using Monte Carlo methods based 
on well-described theoretical models [ 3, 4].  

 

 
Figure 1. Total rapidity distribution of protons produced by relativistic interaction pC (Top)  

Here, the experimental and histograms in black points are the results of the UrQMD 1.3 model, while the 
dashed histograms are the results of experimental old conditions in the UrQMD 1.3 model. The bottom 

figure shows the distribution of “real” protons generated by the UrQMD model, or the histogram of 
protonation of 𝜋𝜋+-mesons with a momentum greater than 0.9 GeV/s, compared to the distribution shown 

by the dashed histogram. Here, in red histogram, the correlation is approximated by the 7th order 
Legendre polynomial 

 
The red histogram as in Figure 1 shows 

the probability of distinguishing a positive pion 
from a proton, and if the MC probability is 
above this curve for each value of 𝜌𝜌23, it is 
assumed that the proton is transformed into a 
𝜋𝜋+-meson, and when its rest mass is changed, 
other physical parameters are also recalculated. 
Otherwise, the proton remains as a proton. 

According to this principle, positive pions 
were separated from protons for other 

interactions, and protons from positive pions 
for the last three interactions. 

The following table proves that by 
applying the Lobachevsky geometry eight types 
of data can be eliminated with maximum 
probability from not being able to distinguish 
high-energy positive particles. Theoretical 
models were used that thoroughly explained the 
experimental data in terms of many physical 
parameters. To date, there are many models that 
describe quite well experimental results.
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Table 1. Proportion of corrected and separated positive particles with momentum greater than 1 GeV/c 
Interaction Beam energy, GeV Correction interval of 𝜌𝜌23 Percent of entangled particles 

p + Ñ 4.2 proton 0.8<  𝜌𝜌23
𝑝𝑝 <2.1  𝜋𝜋+meson 19.7% 

d + C 4.2 A proton 0.8<𝜌𝜌23
𝑝𝑝 <1.9 𝜋𝜋+ meson 22.7% 

He + C 4.2 A proton 0.8<𝜌𝜌23
𝑝𝑝 <1.9 𝜋𝜋+ meson 17% 

  𝜋𝜋+ meson  1.65< 𝜌𝜌23𝜋𝜋
+<2.55 proton 2.9%   

C + C 4.2 A proton 0.8< 𝜌𝜌23
𝑝𝑝 <1.7 𝜋𝜋+  meson 20% 

  𝜋𝜋+ meson  0.5< 𝜌𝜌23𝜋𝜋
+<0.8 proton 10%  

p + C 10 proton 0.8< 𝜌𝜌23
𝑝𝑝 <2.8 𝜋𝜋+ meson 25.3% 

𝜋𝜋−+ p 40 𝜋𝜋+ meson  1.9< 𝜌𝜌23𝜋𝜋
+<6.3 proton 75%  

𝜋𝜋− + Ñ 40 𝜋𝜋+  meson  1.8< 𝜌𝜌23𝜋𝜋
+<6.4 proton 40%  

p + p 205  𝜋𝜋+  meson  2.6< 𝜌𝜌23𝜋𝜋
+<9.8 proton 67%  

 
With this correction, we apply weights to 

each secondary particle, and the studies, such as 
counting particles with real numbers, creating 
clusters etc. can be carried out. Other research 
institutes have conducted extensive study in to 
negative pions recorded by our camera [5]. We 
are now in a position to investigate positive 
pions and protons.  

To confirm this, we constructed the 
transverse momentum distributions of π+ and 
π− -mesons and protons generated by 205 GeV 
𝑝𝑝 + 𝑝𝑝 interaction, and we were able to 
determine the patterns of corresponding 
temperatures by the Hagedorn and Tsallis 
methods. 
 
Hagedorn approach  

The 𝑝𝑝𝑇𝑇 spectrum of the above particles 
was approximated using the Hagedorn 
function. Assuming the Hagedorn 
thermodynamic model [6], and meeting the 
condition 𝑚𝑚𝑇𝑇≥ T, approximation can be made 
by the function of the following form: 

 
1
N
𝑑𝑑𝑑𝑑
𝑑𝑑𝑝𝑝𝑇𝑇

 = F(pT) = A pT �𝑚𝑚𝑇𝑇𝑇𝑇 exp(-mT/T)     (2) 
 
where N is the total number of distributions and 
A is the approximation constant. We find that 
the previous expression is a Hagedorn function 
with one temperature. But this function can be 
the sum of two or more functions of the 
structure. If the sum of the two functions is the 
values of the two temperatures 𝑇𝑇1 and 𝑇𝑇2, then 
the 𝑝𝑝𝑇𝑇 functions of our structure will have the 
following form: 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑝𝑝𝑇𝑇

 = 𝐹𝐹1(𝑝𝑝𝑇𝑇) + 𝐹𝐹2(𝑝𝑝𝑇𝑇) =  𝐴𝐴1 𝑝𝑝𝑇𝑇 �𝑚𝑚𝑇𝑇𝑇𝑇1 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑚𝑚𝑇𝑇/

𝑇𝑇1) +  𝐴𝐴2 𝑝𝑝𝑇𝑇 �𝑚𝑚𝑇𝑇𝑇𝑇2 𝑒𝑒𝑒𝑒𝑝𝑝 − (𝑚𝑚𝑇𝑇/𝑇𝑇2)         (3) 

Assuming that the first sum of this 
expression corresponds to a low value of 𝑝𝑝𝑇𝑇, 
let's mark it as a soft (Soft) process of 
interaction or 𝑓𝑓𝑠𝑠(𝑝𝑝𝑇𝑇) function, while the second 
sum represents a hard (Hard) process 
corresponding to a large value of 𝑝𝑝𝑇𝑇 by 𝑓𝑓𝐻𝐻(𝑝𝑝𝑇𝑇) 
function. Consider how the general function 
𝑓𝑓0(𝑝𝑝𝑇𝑇) is defined by these two functions. On the 
other hand [7], the 𝑝𝑝𝑇𝑇 spectrum of the 
experience covers a wide range, but can be 
considered as a combination of easy (soft or 
most of it reported) and difficult to decipher 
(hard or difficult to find reasons) processes. It 
is a two-component function: 

 
𝑓𝑓0(𝑝𝑝𝑇𝑇) = 𝑘𝑘1𝑓𝑓𝑠𝑠(𝑝𝑝𝑇𝑇) + 𝑘𝑘2𝑓𝑓𝐻𝐻(𝑝𝑝𝑇𝑇)        (4) 

 
where k1(k2) - denotes the ratio of soft and hard 
processes, while many studies are conducted to 
determine the boundaries of the functions 
𝑓𝑓𝑠𝑠(𝑝𝑝𝑇𝑇) and 𝑓𝑓𝐻𝐻(𝑝𝑝𝑇𝑇), we can also make our own 
contribution. The main condition for the sum of 
two and more functions above is 
∫ 𝑓𝑓0
𝑝𝑝𝑇𝑇
𝑚𝑚𝑚𝑚𝑚𝑚

0 (𝑝𝑝𝑇𝑇)𝑑𝑑𝑝𝑝𝑇𝑇 = 1, where 𝑝𝑝𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is the 
maximum value of 𝑝𝑝𝑇𝑇. In expression (3), the 
soft part covers the range of low 𝑝𝑝𝑇𝑇 and the hard 
part covers the whole range of 𝑝𝑝𝑇𝑇. In the low 𝑝𝑝𝑇𝑇 
range, soft and hard processes overlap. 

According to Hagedorn model [8], our 
usual step is to use only an infinite and 
undefined number of different excited hadron 
fireballs to keep the sum of the two functions in 
thermodynamic equilibrium in classical and 
high-energy collisions. A necessary and very 
important conclusion and explanation of this 
mechanism is that the temperature is 
independent of the primary energy [9]. A 
simple proof was made earlier by Field and 
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Feynman a few years later [10]. A predictable 
problem now is that the transverse momentum 
(𝑝𝑝𝑇𝑇) distribution of the ejected particles along 
the axis of relaxation will drive this 
temperature. 

In some cases, the rate of resonance 
generation of pions in the range of very low 𝑝𝑝𝑇𝑇 
is considered, and resonances occur in the range 

of 𝑝𝑝𝑇𝑇 0.2∼0.3 GeV/c. When the system has 
completely transitioned to the equilibrium state, 
its temperature is determined as follows: 

 
𝑇𝑇0  =  𝑘𝑘1 𝑇𝑇1  +  𝑘𝑘2 𝑇𝑇2                  (5) 

 
Where 𝑇𝑇0 is the equilibrium Hagedorn 
temperature.

 

 
Figure 2. Transverse momentum distributions of charged pions and protons.  

Approximations by Tsallis functions 
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Figure 3. Transverse momentum distributions of charged pions and protons.  

Approximations by Hagedron functions 
  

The following table reports the results of approximations with Hagedron and Tsallis functions 
derived from Figure 2,3. 

 
Table 2. Parameters of approximations of Hagedron functions  

 𝜋𝜋−-мезон 𝜋𝜋−-мезон 𝜋𝜋+-мезон 𝜋𝜋+-мезон proton proton 
 Data UrQMD Data UrQMD Data UrQMD 
A1  (GeV)-1 49±2 40±2 52±3 41±2 15±1 39±15 
𝑇𝑇1 (MeV) 115±3 106±8 98±5 114±4 166±4 76±12 
A2  (GeV)-1 1.9±0.9 8.0±2.6 6.6±1.4 4.0±1.4 0.18±0.07 5.1±0.5 
𝑇𝑇2 (MeV) 208±14 176±15 186±6 193±9 403±27 237±5 
𝜒𝜒2/ 𝑛𝑛.𝑑𝑑. 𝑓𝑓 24.1/28 4.2/30 41.8/29 3.2/34 48.1/42 13.9/31 
k1 0.79 0.48 0.48 0.64 0.82 0.14 
k2 0.21 0.52 0.52 0.36 0.15 0.86 
𝑇𝑇0 (MeV) 135±4 144±8 143±4 141±4 198±5 214±9 
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Tsallis distribution 

The Tsallis distribution was first 
proposed as a generalization of the usual 
exponential Boltzmann-Gibbs distribution 
about twenty-five years ago, and characterized 
by the parameters T (temperature), μ (chemical 
potential), g (particle spin reduction 
coefficient), and V (volume). An equation of 
this form exp(-E/T) is usually expressed in the 
general form of the Boltzmann-Gibbs 
exponential distribution: 

 
𝑑𝑑3𝑁𝑁
𝑑𝑑𝑝𝑝3

=
𝑔𝑔𝑔𝑔

(2𝜋𝜋)3 �1 + (𝑞𝑞 − 1)
𝐸𝐸 − 𝜇𝜇
𝑇𝑇

�
− 𝑞𝑞
𝑞𝑞−1

    

 
𝑞𝑞 → 1  →   𝑔𝑔𝑔𝑔

2𝜋𝜋3
𝑒𝑒𝑒𝑒𝑝𝑝 �− 𝐸𝐸−𝜇𝜇

𝑇𝑇
�                 (6) 

 
Such an approach is known as non-

extensive statistics in which the parameter q 
summarily describes all features causing a 
departure from the usual Boltzmann-Gibbs 
statistics[10]. In particular it was shown in [11] 
that 𝑞𝑞 − 1 = 𝑔𝑔𝑉𝑉𝑉𝑉 (𝑇𝑇)/〈𝑇𝑇〉2 and directly 
describes intrinsic fluctuations of temperature. 
However, the Tsallis distribution also emerges 
from a number of other more dynamic 
mechanisms, for example see [12] for more 
details and references. This approach has been 
shown to be very successful in describing 
multiparticle production processes of a 

different kind (see [11, 12] for recent reviews). 
If we show the Equation (5) in terms of 
transverse momentum and transverse mass, 
𝑚𝑚𝑇𝑇 = �𝑚𝑚0

2 + 𝑝𝑝𝑇𝑇2, and rapidity y, Eq. (5) 
becomes as follows. Here, m0 is the rest mass 
of a particle. If we include  𝑚𝑚𝑇𝑇 and y variables 
in expression (5), the function of the particles 
structure can be expressed as below.  

 
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑

= 𝑔𝑔𝑔𝑔 𝑝𝑝𝑇𝑇 𝑚𝑚𝑇𝑇𝑐𝑐𝑐𝑐𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑠𝑠ℎ (𝑑𝑑) 
2𝜋𝜋2

× �1 + (𝑞𝑞 −

−1)𝑚𝑚𝑇𝑇𝑐𝑐𝑐𝑐𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑠𝑠ℎ (𝑑𝑑) −𝜇𝜇
𝑇𝑇

�
 − 𝑞𝑞

𝑞𝑞−1           (7) 
 
Approximation of the transverse 

momentum distribution of secondary charged 
particles resulting from p+p collisions with 
energy √𝑠𝑠 = 19.7  GeV was approximated by 
Tsallis distribution under three conditions. The 
particle spin reduction coefficient g in 
expression (5) is calculated as 1 for 𝜋𝜋± and 2 
for protons. It can be seen in Figure 1 that the 
transverse momentum distribution is well 
explained by the Tsallis method in total rapidity 
intervals for 𝜋𝜋± -mesons and protons from 
experimental proton-proton collisions. Table 3 
lists the values of volume (V), entropy index 
(q), temperature (T) and χ2  per unit degree of 
freedom for total rapidity intervals. 

  
 

Table 3. Parameters of Tsallis function approximation 
 𝜋𝜋− -meson 𝜋𝜋−-meson 𝜋𝜋+ -meson 𝜋𝜋+ -meson proton proton 
 Data UrQMD Data UrQMD Data UrQMD 
𝑔𝑔𝑔𝑔  (GeV)-1 1961±116 1429±72 1726±20 1700±20 1104±26 892±24 
q 1.081±0.004 1.073±0.003 1.097±0.003 1.076±0.003 1.124±0.006 1.085±0.004 
T (MeV) 101±1 108±1 104±1 107±1 130±2 152±2 
χ2 / n.d.f 22.6/29 22.1/29 54.8/35 10.3/34 52.1/42 88.0/34 

 
Tables 2 and 3 show that Tsallis 

temperatures (T) are approximate to Hagedorn 
temperatures (𝑇𝑇1). On the other hand, the 
Hagedorn temperatures 𝑇𝑇2 and 𝑇𝑇0 are greater 

than the Tsallis temperature (T) indicating that 
the unstable states are undergoing heat 
exchange as they transition to the equilibrium 
state.   

CONCLUSIONS 
 

We no longer use weights [13] as 
secondary particles, and studies such as count 
particles with real numbers, creating clusters, 
etc. are now performable. 

We have now shown that the conditions 
for the study of positive pions and protons are 

in place. The fraction of entangled particles 
increases with initial energy. 

Thallis temperatures (T) are close to 
Hagedorn temperatures (𝑇𝑇1). On the other hand, 
the Hagedorn temperatures 𝑇𝑇2 and 𝑇𝑇0 are 
greater than the Tsallis temperature (T), 
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indicating that the unstable states undergo heat 
exchange as they move to the equilibrium state. 

This research work was carried out within 
the framework of the 2019/20 project of the 
Ministry of Education and Culture. 
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