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Abstract: Motivated by the current lack of knowledge regarding phase transition in a free surface water 
flow, a novel and efficient numerical model for liquid-solid phase transition in a free surface flow has been 
developed for the Lattice Boltzmann Method (LBM). The proposed model consists of two physically sound 
modules for solving free surface flow and heat transport. The heat transport module features an immersed 
boundary method and a non-iterative enthalpy-based approach. Sub-cycling time integration, improving 
the numerical stability of the heat transport module, is introduced for the integration of modules. The 
performance and accuracy of the model are verified through a preliminary experiment involving a melting 
ice cube. The obtained results indicate that the phase transition of fluid in any flow regime can be easily 
handled by the model with reasonable accuracy.
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INTRODUCTION

Phase transitions in a fluid flow, 
which involve both thermodynamics and 
hydrodynamics, are common but complex 
phenomena in the free-surface condition. The 
problems of phase transitions and free surface 
flow have attracted growing attention in recent 
years due to their importance in engineering. 
Moreover, these problems commonly exist 
simultaneously in cold nature, e.g., water 

freezing or ice melting in a river, lake, ocean 
or a water pipe and casting in industries. 
However, unified numerical modeling of such 
problems has rarely been performed [1]. 

A liquid-solid phase transition problem 
is often referred to as a Stefan problem 
and basic modeling approaches have been 
presented in [2] and a number of other studies. 
Among communities conducting numerical 
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studies on phase transitions by applying 
conventional methods, fixed spatial grid and 
front tracking methods are extensively used 
in the confined domain [3], [4] without the 
free-surface condition. Recent models for use 
in the conventional method are effective but 
cumbersome and require several systems of 
equations to solve flows and phase transitions, 
as well as adaptive or moving grids to clearly 
define melting/solidification front and iterative 
techniques [5] to solve nonlinear equations. 
However, phase transitions in a natural 
convection flow remain a primary focus of 
study. Particle-based methods, which have an 
inherent ability to represent the free surface, 
are beginning to be applied to melting and 
solidification problems in free surface flows 
[6].

In the present study, based on the 
advantages offered by the LBM for problems 
involving phase transition and the treatment 
of the free-surface condition, we propose a 
novel numerical LBM procedure for solving 

the phase transition of fluid with a free surface 
flow. 

The proposed coupled algorithm for a 
phase transition and free surface flow is 
obtained as follows: The numerical model 
uses two distribution functions expressed 
through lattices on a fixed grid: one for a flow 
field module and the other for a heat transport 
module. We slightly modified the enthalpy-
based model of [7] to be non-iterative for 
the heat transfer, whereas phase transition 
was performed using the immersed boundary 
method with liquid fractions, which is defined 
by the local enthalpy. In the proposed method, 
the local enthalpy, obtained by iterative 
way in [7], is updated non-iteratively with a 
temperature field. We incorporated the free 
surface algorithm of [8] with a heat transport 
model. 

In the following, we describe in detail 
the proposed method in order of numerical 
algorithm and numerical applications thereof. 

Lattice Boltzmann Method for free surface flows with phase transitions

Free surface fluid flow

The free surface algorithm for use in the 
LBM was first introduced by [9] and [10] for 
the simulation of metal foaming and was later 
corrected for and tested on two- and three-
dimensional free surface flows by [11] and 
[10]. Since the free surface in the LBM can 
be described using the same concept applied 

in the volume of fluid (VOF) method [12], 
each cell has a volume fraction value of fluid 
that is expressed as the ratio of the mass to the 
density of the cell, i.e., ϵ = m / ρ. Depending 
on the volume fraction value of the liquid, each 
cell is marked by flags as an indication of the 
materials in the computational cell, such as F 
for fluid (water), G for gas (air), S for solid, 
and IF for interface cells (see Fig. 1b).

Figure 1. General scheme of the proposed model. (a) D2Q9 lattice configuration on the 2D grid; (b) 
materials in the domain and free surface representation.
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The free surface is represented as chained 
single-layered interface cells, having an 
arbitrary volume fraction value of 0 to 1, and 
the evolution of the free surface is tracked by 
mass calculation of the interface cells and cells 
other than solid and gas cells, which have no 

water fraction content. In contrast to the VOF 
method, the mass value of the cell is directly 
updated by mass exchange with neighboring 
cells at each time step of computation [8], as 
follows:

where x is the space vector, t is the current 
time, Dt is the time step, and  denotes the 
lattice direction (Fig. 1a). Mass exchange Dmi 
is allowed for interface cells with neighboring 
F or IF cells, but is not allowed for interface 
cells with neighboring G or S cells, as shown 
in Fig. 1b. Mass exchange between IF and F 
cells is easily defined by the difference between 
coming and leaving distribution functions, as 
∆mi=se= fi(x+ci,t)-fi(x), before the streaming 
step, where fi(x) is a distribution function 

	 � (1)

in space and ci is a lattice velocity. After the 
mass is updated over the entire domain using 
Eq. (1), streaming and collision steps for the 
free surface flow module (Eq. (6)) and the heat 
transport module (Eq. (11)) are performed in 
order to obtain new macroscopic variables (Eq. 
(10) and Eq. (13)). Since the density of the cell 
is updated by Eq. (10), then the interface cell 
might be transformed into a G or F cell based 
on the following criteria:

	 � (2)

where k (=10-3) is the additional offset 
value for the emptied or filled threshold for 
ignoring cell, which were previously treated. 
Depending on the filled or emptied status of 

the IF cell, the flags of neighboring G or F cells 
should be changed and the cells should obtain 
appropriate mass according to the excess mass 
distribution:

	  � (3)

where mex is the positive or negative excess 
mass of the filled or emptied IF cell, and 
total is the sum of all weights i, each of which 

is computed by normal vector n on the free 
surface as follows:

	�  (4)

Actually, the flags of the changed cells, 
i.e., the emptied or filled IF cells and their 
neighboring G or F cells, are not allowed to 
change before the excess mass is distributed. 
Based on Eq. (2), these cells will have a 
temporal transition flag during the excess 

mass distribution. Moreover, the distribution 
functions of the newly generated interface 
cells having temporal transition flags, which 
changed from G to IF, can be initialized with 
the equilibrium distribution functions.

Right after the streaming step in the 



Proceedings of the Mongolian Academy of Sciences Vol. 58 No 01 (225) 2018

- 7 -

PMAS
Proceedings of the Mongolian Academy of Sciences https://www.mongoliajol.info/index.php/PMAS

Vol. 58 No 03 (227) 2018
DOI: https://doi.org/10.5564/pmas.v58i3.1030

fluid flow module, the free surface boundary 
condition must be imposed on the interface 
cells in order to recover the distribution 
functions that would be streamed from G cells. 

The free surface boundary condition assumes 
that the fluid has a much lower kinematic 
viscosity than the gas state [8] and is expressed 
in terms of the following distribution function:

where ρA is the gas density implicitly 
acting as air pressure on the free surface and 
the velocity u is defined by using Eq. (10) in 
previous time step or by initial condition at 
first. 

Now, all of the distribution functions 

are available for the time evolution of the 
distribution function by the discretized Lattice 
Boltzmann equation with the Bhatnagar-
Gross-Krook (BGK) collision operator [13] 
and modification of the immersed moving 
boundary [14]:

� (6)

	 � (5)

where ci is the discrete unit velocity in the 
i direction, τtot is the dimensionless relaxation 
time with respect to the lattice viscosity ν and 

is adjusted with the sub-grid scale turbulent 
model proposed by [15], and b is the parameter 
given by [16]

	 � (7)

in which lf (x,t) is the liquid fraction value 
of the cell, which takes a value between 0 and 
1. Liquid fraction values of 0 and 1 represent 
ice and water, respectively, as shown in Fig. 
1b. In Eq. (7), the total relaxation τtot can be 
used instead of the relaxation time τ. The 
immersed boundary modification can be 
used for not only dynamic separation of solid 
(ice) and liquid (water) phases, but also for 
a moving body (moving ice) in a fluid flow 

[17]. In this regard, freely moving ice and its 
melting process have been successfully tested 
with the experimental results [17]. Dynamic 
interface between the liquid and solid states 
in phase transition phenomena is considered 
as a complicated moving boundary problem.  
Therefore, an additional collision term fi

m, 
which easily handles the moving boundary, is 
for cells partially or fully covered by a solid, 
i.e., ice cell, is given as

	 � (8)

where us is the velocity of the moving solid, 
which is set to 0 in the present study, i.e., the 

ice is fixed. In Eq. (6), we use the force scheme 
proposed by [18] for the body force term:

	 � (9)

where  is the dimensionless acceleration due 
to gravity, aV is the thermal volume expansion 
of water, and θo is the dimensionless reference 

temperature at the maximum density of water. 
The value of  aV can be defined in terms of the 
Rayleigh number (Ra) definition. The force F  in 
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Eq. (9) includes the acceleration of gravity and 
non-Boussinesq approximation [19] and [17] 
for the buoyance. The equilibrium distribution 
function for an incompressible fluid flow can 
be determined by the expansion of a Maxwell 

distribution [20]. The macroscopic variables, 
namely density ρ and velocity u, can be 
computed based on the order of the moments 
of the distribution functions fs as

	 � (10)

In the free surface LBM, the simulation 
neglects G and S cells [21] in order to reduce 
the computational time, because these cells are 

only involved in the imposition of the boundary 
conditions, and so no physical variables will 
be determined in the gas phase.

Heat transfer with phase transition in LBM

In the modeling of heat transport with phase 
transition, the temperature field is considered 
to be an essential variable and can be calculated 

by the following thermal Lattice Boltzmann 
equation with latent heat of fusion [22]:

� (11)

where  is the distribution function 
for the temperature field, th(=3a+1/2) is 
the dimensionless relaxation time with 
respect to the thermal diffusivity a, Lh  is 
the dimensionless latent heat of fusion, and 

cp is the specific heat capacity of water or 
ice. The specific heat capacity and thermal 
diffusivity must be defined appropriately on 
the computational cell depending on the cell 

type:	 � (12)

where the superscripts ice and water indicate 
the thermal diffusivities and specific heat 
capacities of ice and water, respectively. 
The specific heat capacity of water in 
lattice form can be obtained from the Stefan 
number, , and is 

related to the specific heat capacity of ice as 
. The 

Stefan number in the simulations of the present 
study is always fixed at 0.5. The equilibrium 
distribution function for the temperature field 
can be given as

	 � (13)
and the macroscopic temperature T can be converted into dimensionless temperature θ as follows:
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	 � (14)

as the continuity and momentum equations, 
respectively. The immersed boundary 
modification, which is realized as the bounce-
back rule for the non-equilibrium part of the 
distribution functions [14], in the multiscale 
expansion will lead the form of a forcing 

function in Eq. (17) that reproduces the effect 
of the immersed boundary [23]. For the heat 
transfer module, equation (11) can recover 
the following dimensionless macroscopic 
equation using the multiscale expansion:

After the dimensionless temperature evolution, 
the local enthalpy, obtained by En=cp θ+ lf(x,t-

Dt)Lh, can be used to linearly interpolate the 
liquid fraction,

	 � (15)

and the liquid fraction defines the liquid 
(water) and solid (ice) phases in the domain. 
The model does not require iteration for the 
local enthalpy, since it was reported that 
the enthalpy update without iteration has 
negligible effects [7]. And also the model uses 
exact thermal properties for phases, which 
are often neglected in existing numerical 
methods, i.e., the thermal properties of the 

liquid are used for both the solid and liquid 
phases. Numerically, Eq. (6) and (11) must be 
solved in two steps, namely the collision and 
streaming steps.
The multiscale expansion, the so-called 
Chapman-Enskog expansion [20], of Eq. (6) 
without the immersed boundary modification 
gives the following dimensionless macroscopic 
equation in summation convention:

	 	�  (16)

	 � (17)

where the viscosity is identified as

	 � (18)

	 � (19)

where the heat source term, , is directly derived from the last term in the right hand side of 
Eq. (11) [22]. 
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Implementation
The computation is performed only for F and 
IF cells with the free surface algorithm, and G 
or S cells must be used to impose a boundary 
condition on the free surface or solid walls. The 
phase, i.e., ice or water, is assigned to F cells 
(Fig. 1b) because ice, which acts like a solid, 
will become water after melting. Moreover, if 
ice interacts with the air (G cells), boundary 
cells between the ice and air must be IF cells 
because IF cells have a certain water content. 
At the interface between ice and water,  takes 
a value of between 0 and 1, where a “mushy” 
zone [24] may be observed when conduction 
dominates heat transfer [25] and can be defined 
when the solidus and liquidus temperature are 
distinguished [22]. The interaction between 

the free surface flow module and the heat 
transport with phase change module is such 
that the temperature difference produces a 
buoyance force in the flow field, and the flow 
field affected by the buoyance force forms a 
temperature field in the domain. Although the 
buoyance force is negligible in a turbulent 
flow, it must be included in the computation. 
The lattice viscosity is related to the lattice 
thermal diffusivity of a fluid as awater=v/Pr, 
where Pr is the Prandtl number, so that the 
relation between the computational modules 
is maintained. However, depending on the 
choice of grid spacing and time step, the 
modules must be integrated in two different 
time scales, which results in sub-cycling in the 
time integration, as follows:

	 � (25)

where [∙] is the floor operator to convert a real 
number to an integer, Δth is the time step of the 

heat transport module, and Δtf is the time step 
of the fluid flow module.

Model development and validations

In a previous study [25], we successfully 
solved the natural convection flow in order to 
validate the numerical code of a fluid flow with 
heat transport. The validated code was then 

extended to include a phase transition without 
the latent heat source term. With the following 
tests, the validity of the proposed model is 
elaborated. 

Melting of a slab of ice
Here we consider a Stefan problem, melting of 
a slab of ice with length of 0.1 m, to validate 

the proposed Lattice Boltzmann Method. The 
analytical solution of this problem is given as 
[2]

	 	�  (20)

	 � (21)
with the transcendence function for χ,

	 � (22)

to find positions of liquid-solid interface and 
temperature distributions in liquid region at 

times, respectively. Initially, temperature of 
the ice slab was at melting temperature of 
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Tmelt=00C. One side of the ice was insulated, 
while the other was set at  Tmax=250C abruptly at 
t=0 and it is maintained for all times t>0 in our 
experiment. We set imaginary thermocouples 
in the slab at a length of 0.01, 0.03, 0.05, 
and 0.09 m respectively and measured the 

temperature in time evolution. Simply, we 
chose 100 grids for the length of the slab in 
both the analytical and numerical solutions. 
For the numerical solution, we used D1Q3 
lattice arrangement [26] for Eq. (16) and the 
relaxation time is obtained from the relation

	 � (23)

where  is the time step, which is set as 
Dth=0.1 s and Dx(=0.001m) is the grid spacing. 
The constant temperature boundary condition 
[27] is applied for the heated side of the slab, 
while the second order extrapolation boundary 
condition [26] is imposed on the other side. 
The temperature is calculated by Eq. (14) using 
the dimensionless temperature computed by 
LBM, and then the melting front, the liquid-
solid interface, is defined by the liquid fraction 
value using Eq. (15).
The total melting time was defined as 34.01 
hours by the analytical and the present LBM 
(1). The comparisons of the results by the 
analytical and numerical solutions are given 
in Figs. 2 and 3. The colour map of Fig. 2 is 
the temperature distribution estimated by the 
analytical solution. The result of the present 
LBM (1) uses the relaxation time defined by 
Eq. (23), whereas the LBM (2) uses the adjusted 
relaxation time, where the thermal diffusivity 
is considered as a function of temperature. 
The good fit of the melting fronts is found 

between the analytical solution and the LBM 
(2) because the simulation takes advantage of 
the more proper value of thermal diffusivity 
for the given range of temperature. However, 
the total melting time with the LBM (2) lasted 
34.29 hours. The numerically defined melting 
fronts in Fig. 2, as well as the temperature 
profiles at different times and measurement 
positions in Fig. 3, show the discrepancy in the 
middle of the simulation time. Good agreement 
is observed before 8.5 hours and after 30 
hours in the experiment, as shown in Figs. 
2 and 3. The temperature profiles at specific 
times, which are the times the melting front 
reaches the imaginary thermocouples,by the 
analytical solution, show the linear in space, 
while the profiles defined by the LBM show 
the deviation in space. The maximum errors of 
the LBM compared to the analytical solution 
are reported in Table 1. The Stefan problem 
gives the validation for phase transition of ice 
in tiny volume ignoring the fluid flow, as well 
as the free-surface condition.

Table 1. Maximum errors of LBM compared to analytical solution

Cases Relaxation 
time, th

Maximum error (%)

of melting front of temperature profiles 
at times

of temperature profiles 
at positions

LBM (1) 0.579 4.04 5.59 5.00
LBM (2) 0.569 1.32 7.80 4.53
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Figure 2. Time history of temperature distribution and melting front locations by the analytical and 
numerical methods.

Figure 3. Temperature profiles at different times and at different positions: blue lines for the temperature 
distributions at times and red lines for the temperature distributions at positions.
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Melting of an ice cube in ambient temperature
In order to validate the proposed numerical 
procedure in the free-surface condition, we 
carried out a brief laboratory experiment. The 
melting of an ice cube prepared in a freezer 
was compared with the results of LBM 
simulation. We used a commercially available 
infrared thermal imaging camera to measure 
the temperature distribution in a captured 
frame. An ice cube having sides of 4.5 cm 
was placed on a smooth wooden surface 
having lower thermal diffusivity and lower 
reflection of heat. In the heat transport module 
of the numerical model, the wooden surface 
was modeled as an adiabatic wall and the 
constant-temperature boundary condition was 
imposed on the water/ice surface interacting 
with the surrounding air. The temperature was 
maintained constant at room temperature on 

the boundary, as in experiment. In the fluid 
flow module, the wooden surface under the 
ice cube was assumed to be a no-slip wall, 
whereas the free surface boundary condition 
(Eq. (5)) without surface tension was assumed 
for the water/ice surface interacting with the 
air. We used 60 grids for one side of the ice 
cube, the grid spacing was ∆x = 7.5×10-4 m, 
and the time steps were ∆tf=6.91×10-3 s and 
∆th=7.603×10-2 s. These time steps provided 
sub-cycling at ns=12, so that the heat transport 
module is performed once every twelve steps 
of the fluid flow module. The time sequence of 
the thermal image is shown in Fig. 4a, followed 
by the corresponding numerical results in Figs. 
4b and 4c. In the experiment, ice melts from 
the bottom at a low rate, although no melting 
occurs in numerical simulation because of the 
given boundary condition.

Figure 4. Time sequences of the experimental and numerical results for an ice cube melting in ambient air. 
(a) Infrared images of the ice cube and ambient condition; (b) numerically determined temperature field; 

(c) numerically determined ice and water phases.
As shown in Fig. 4, the difference in height 
of the melting ice cube after 62 min was 3.56 
mm, whereas the numerical value was higher. 
The top of the ice cube became rounded in the 
numerical simulation, whereas, in experimental 
test, the top remained approximately flat. The 
reason for this difference in shape might be 
related to the velocity of flowing water on the 
surface of the ice cube. The water thickness 

flowing on the ice surface in the numerical 
test, indicated as lf=0 in Fig. 4c, was observed 
to be much thicker than in the experiment. 
Since we used a coarse grid for discretization, 
the numerical model requires at least two 
double-layer grids to simulate the surface of 
the water covering the ice. The average water 
surface temperature on the ice, as determined 
by the thermal camera, was approximately 
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2.2°C in the experiment, as shown in Fig. 4a, 
which agreed with the result of the numerical 
simulation for the ice-water interface. For the 
sake of generality, we show the remaining 
ice percentage with respect to melting time 
in Fig. 5, which shows the accuracy of the 
numerical model. The melting rate of ice was 
nearly linear, and the numerical results were 

in good agreement with the experiment results, 
with the exception of the initial oscillation in 
the numerical results. Similar studies were 
conducted by [28] for an ice cube in still water 
and by [29] for an ice cube melting in ambient 
air. Both of these studies used particle-based 
methods, and their results were less continuous 
and exhibited a step-like tendency over time.

Figure 5. Experimentally and numerically determined remaining ice area.

CONCLUSIONS

The phase transition of water in free surface 
flow was numerically modeled in a framework 
of the Lattice Boltzmann Method. The novel 
computational model includes modules that 
take into account heat transport with phase 
transition and free surface fluid flow and 
liquid-solid phase transition treatment by the 
immersed boundary modification into the 
Lattice Boltzmann equation. The proposed 
model uses appropriate thermal properties, 
namely, thermal diffusivity and specific heat 
capacity, for the ice and water phases, so that 
heat transport can be properly defined in each 
phase. The modules in the model incorporate 
sub-cycling of time integration, which 

effectively improves the numerical stability in 
computation. Based on numerical analysis, the 
numerical model was proved to be acceptable 
for use in engineering research in terms of 
numerical consistency. 
Several improvements and additions to the 
proposed model are being considered as areas 
for future research. For instance, the model 
performance for freezing or ice formation 
study must be properly tested and validated 
through experimental studies under various 
conditions. Also, the modeling of freely 
moving ice that is melting or freezing is a 
challenge [17]. However, the present paper has 
laid the foundation for these improvements. 
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