Phytochemical analysis of Cynara scolymus L. cultivated in Mongolia

N.Tsevegsuren¹, G.Davaakhuu², Ts.Udval¹

¹Department of Chemistry, School of Arts & Sciences, National University of Mongolia, University Street 1, Sukhbaatar district, Ulaanbaatar, 14201, Mongolia.

²Department of Biology, School of Arts & Sciences, National University of Mongolia, University Street 1, Sukhbaatar district, Ulaanbaatar, 14201, Mongolia.

Abstract: Cynara scolymus L. (Artichoke) is a traditionally consumed vegetable in many countries. In Mongolia, this plant has been successfully cultivated during the last years. The present study is an attempt to investigate the phytochemical composition of C.scolymus L. The result reveals the presence of bioactive constituents comprising flavonoids, total phenolic compounds, saponins and total proteins, carbohydrates, lipids and vitamin C in plant parts. The presence of these phytochemicals can be correlated with the medicinal potential of this plant.

Keywords: Cynara scolymus, Compositae, phenolic compounds, flavonoids

INTRODUCTION

Cynara scolymus L. is a perennial plant of Compositae belonging to the family of Asteraceae. This plant is cultivated in Mongolia for medicinal purposes. Its leaves and flowers are high in total phenolic compounds, saponins and total proteins, carbohydrates, lipids and vitamin C [1-3]. C. scolymus contains up to 2% of phenolic acids, primarily chlorogenic acid, cyanin, and caffeic acid; 0.4% of bitter sesquiterpene lactones of which 47·83% is cynaropicrin, grosheimin; 0.1-1% of flavonoids like luteolin including the glycosides as luteolin-7-O-rutinoside (cynaroside), luteolin-7-O-β-glucopyranoside (cynaroside), apiigenin-7-O-rutinoside, cynarosaponins and inulin [5-7]. Research studies of C. scolymus leaf extract has shown antioxidant, antibacterial, anti-HIV, bile-expelling, hepatoprotective, urinative and choleretic activities, as well as the ability to inhibit cholesterol biosynthesis and LDL oxidation [3, 8]. Although the extract has been used as medicine for many years, it has not been extensively examined as an antimicrobial agent.

C. scolymus can be eaten as a fresh, canned or frozen vegetable [9]. Historically, this plant has been used in folk medicine since Roman times, for its health benefits which are mainly due to high content of polyphenols and inulin [9, 10]. These substances are very important for the human nutrition since they are involved in the prevention of cancer [11]. Among the common edible plants, it is the richest source of dietary antioxidants [12] therefore it could be used in phytopharmaceutical applications [9, 13].

EXPERIMENTAL

Materials and Methods: Leaves, flower (bulb), and root of C.scolymus were obtained from experimental plot of the Research & Training Center “Nart” of Mongolian State University of Agriculture, in September 2011 during flowering stage. The collected plant material was air-dried in darkness at room temperature (20°C). Dried plant materials were cup up and stored in dark conditions until for further use. The moisture content was determined by drying at 105°C to constant weight, ash content by high temperature incineration in a muffle furnace [14], total lipids by Soxhlet, and carbohydrates by the Bertrand’s method, ascorbic acid by titrimetric method. The crude protein content was determined by Kjeldahl method, and protein content was estimated using a nitrogen factor of 6.25 [15, 16]. The total phenolic contents in plant parts were determined by spectrophotometrically according to Folin-Ciocalteu method. Gallic acid was used to set up the standard curve. The content of phenolic compounds of the samples was expressed as gallic acid equivalents (GAE) in mg/gram dry weight. The

DOI: http://doi.dx.org/10.5564/mjc.v15i0.320
AlCl₃ method [17, 18] was used for quantification of the total flavonoid content of the plant parts. The absorbance was determined using spectrophotometer at Aₘₐₓ=415 nm. Flavonoid contents were expressed as quercetin equivalents in mg/g dry material [17]. All the samples were analyzed in triplicates. Data are presented as means and standard errors of the mean.

The parts of C.scolymus showed either presence or absence of different phytochemicals. The preliminary phytochemical analysis showed that phenolic compounds, flavonoids and saponins were present in all parts of the plant, but absent coumarins, alkaloids and tannins. The leaves of C. scolymus L. have high quantity of total phenolic compound (50 GAE, mg/g).

Table 1. Chemical composition of C. scolymus

<table>
<thead>
<tr>
<th>Parts of plants</th>
<th>Moisture, %</th>
<th>Ash, %</th>
<th>Aqueous extractable compounds, %</th>
<th>Total protein, %</th>
<th>Total carbohydrate, %</th>
<th>Lipids, %</th>
<th>Vitamin C, mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower, head</td>
<td>6.3±0.1</td>
<td>5.8±0.2</td>
<td>20.8±0.2</td>
<td>13.5</td>
<td>56.5</td>
<td>0.1</td>
<td>12.2</td>
</tr>
<tr>
<td>Leaves</td>
<td>5.5±0.05</td>
<td>7.9±0.7</td>
<td>21.0±0.2</td>
<td>12.6</td>
<td>56.9</td>
<td>0.1</td>
<td>16.0</td>
</tr>
<tr>
<td>Root</td>
<td>5.4±0.05</td>
<td>7.8±0.9</td>
<td>16.4±0.2</td>
<td>12.9</td>
<td>58.3</td>
<td>0.1</td>
<td>12.8</td>
</tr>
</tbody>
</table>

Table 2. Phytochemical screening of C.scolymus

<table>
<thead>
<tr>
<th>Parts of plant</th>
<th>Phenolic compounds</th>
<th>Flavonoids</th>
<th>Alkaloids</th>
<th>Saponins</th>
<th>Tannins</th>
<th>Coumarins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower, head</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leaves</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Root</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3. Phytochemical analysis of C.scolymus

<table>
<thead>
<tr>
<th>Parts of plant</th>
<th>Total phenolic compounds, GAE, mg/gram</th>
<th>Flavonoids, %</th>
<th>Saponins, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower, head</td>
<td>45</td>
<td>0.07±0.01</td>
<td>2.1±0.01</td>
</tr>
<tr>
<td>Leaves</td>
<td>50</td>
<td>0.15±0.02</td>
<td>2.9±0.05</td>
</tr>
<tr>
<td>Root</td>
<td>-</td>
<td>0.05±0.01</td>
<td>1.5±0.04</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

The results of chemical analysis of C. scolymus were reported in Table 1, phytochemical screening of the plant parts are summarized in Table 2 and Table 3. Phytochemical constituents in the plant were summarized in Table 3.

The results of moisture analysis showed that, moisture content of C.scolymus cultivated in Mongolia was (5.4-6.3±0.2). The same trend were recorded with protein (12.6–13.5; 12.39) and carbohydrate (56.5–58.3; 56.72) contents for C.scolymus cultivated in Mongolia and Egypt respectively. The total lipid of C.scolymus was 0.1 % and for baby ancio was 3.78 %. From the obtained results we noted that the protein and carbohydrate content in C.scolymus cultivated in Mongolia significantly higher than baby ancio (Egypt) [19] species but less in lipid content. The host of natural antioxidant essentially represented by the phenolic compounds used as nutraceuticals, and found in apples, green-tea, and red wine and in many medicinal plants as phytochemical or secondary metabolites. The percentage of total flavonoids in leaves was (0.15 ± 0.02%). This moderately high level of flavonoid present in the leaves could be attributed to its antioxidant capacity. High levels of saponins (2.9 ± 0.05%) are found in the leaves of C.scolymus. This high level of saponins present in the leaves directly correlates with the fact that the leaf of C.scolymus has been used traditionally as medicine for cancers [6]. Leaves were found to contain total phenolic compounds, and vitamin C which were similar with data resulted from C.scolymus cultivated in the other countries [19].
CONCLUSIONS

It can be concluded from the present study that the plant parts of *C. scolymus* possesses various phytochemicals like total phenols, saponins, flavonoids, proteins and vitamin C in high quantity. These phytochemicals possess various bioactive properties and may be used as external therapeutic supplement. We are now trying to identify and isolate the different phytochemicals from the leaf of *C. scolymus* and to test these bioactive compounds for their antioxidant and anti-cancer activity. The characterization of *C. scolymus* is very important to improve its cultivation and future marketing in Mongolia.

ACKNOWLEDGEMENTS

This study has been supported by the Mongolian Foundation for Sciences and Technology.

REFERENCES