
Munkhsuren et al, 2021. Mongolian Geoscientist 26 (53) 37-54 

DOI: https://doi.org/10.5564/mgs.v26i53.1790   

37 

ABSTRACT 

This study investigated the multispectral remote sensing techniques including 
ASTER, Landsat 8 OLI, and Sentinel 2A data in order to distinguish different 
lithological units in the Alagbayan area of Dornogobi province, Mongolia. 
Therefore, Principal component analysis (PCA), Band ratio (BR), and Support 
Vector Machine (SVM), which are widely used image enhancement methods, have 
been applied to the satellite images for lithological mapping. The result of 
supervised classification shows that Landsat data gives a better classification with an 
overall accuracy of 93.43% and a kappa coefficient of 0.92 when the former 
geologic map and thin section analysis were chosen as a reference for training 
samples. Moreover, band ratios of ((band 7 + band 9)/band 8) obtained from ASTER 
corresponds well with carbonate rocks. According to PCs, PC4, PC3 and PC2 in the 
RGB of Landsat, PC3, PC2, PC6 for ASTER data are chosen as a good indicator for 
different lithological units where Silurian, Carboniferous, Jurassic, and Cretaceous 
formations are easily distinguished. In terms of Landsat images, the most efficient 
BR was a ratio where BRs of 5/4 for alluvium, 4/7 for schist and 7/6 to discriminate 
granite. In addition, as a result of BR as well as PCA, Precambrian Khutag-Uul 
metamorphic complex and Norovzeeg formation can be identified but granite-gneiss 
and schist have not given satisfactory results.  
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INTRODUCTION 
In recent years, multispectral remote sensing 
data has been widely used in geological research 
such as lithological mapping, mineral alteration 
mapping as well as structural geology (Kumar et 
al., 2015; Pour et al., 2019; Adiri et al; 2016; 
Bentahar et al., 2020). For geological science, 
the approach of this technique is based on the 
characteristics of the physical and chemical 
properties of the different types of rocks. In 

detail, these rocks reflect the electromagnetic 
energy in three areas including visible (400-700 
nm), near-infrared (700-1300 nm), and short 
wave infrared (1300-2500 nm) (Hauff, 2008), 
which could allow the identification of the 
spectral absorption features of the mineral 
composition of the rock (Bachri et al., 2019). 
Minerals such as iron, copper, and manganese 
are easily distinguished in the visible areas 
while spectral information in the near-infrared is 
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Table 1. The characteristics of spectral bands of Landsat 8 OLI and ASTER, and Sentinel  2A  

useful for garnet, hydroxide, and carbonate 
minerals (Hauff, 2008). One of the most 
important advantages of remote sensing is that it 
could be an affordable and effective method for 
lithological mapping especially in arid and 
inaccessible regions (Zhang and Li., 2014; 
Masoumi et al., 2017; Ge et al., 2018). 
Therefore, it can be applied to improve the 
traditional geological mapping process with 
satellite data, which can be used at no additional 
cost. 
Unfortunately, only a few studies have been 
mapped previously using remote sensing 
techniques within the territory of Mongolia 
(Stolz 2008; Son et al., 2012; Munkhsuren et al., 
2019; Son et al., 2019; Son et al., 2021). Apart 
from this, the study area is located in the Gobi 
Desert, which spans through the southern and 
eastern parts of Mongolia. Therefore, the 
relatively sparse vegetation canopy and an 
ample rock exposure of this study area could 
provide an adequate basis for remote sensing 
techniques.  
The Landsat Operational Land Imager (Landsat 
OLI 8) multispectral data includes 11 spectral 
bands with a spatial resolution of 30 m, and a 
panchromatic band, having a spatial resolution 
of 15 m and two TIR bands which has a spatial 
resolution of 100 m (Table 1). Advanced 

Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) data consists of 14 bands, 
particularly three VNIR bands with 15 m spatial 
resolution, six SWIR bands with a 60 m 
resolution and five TIR which have a 90 m 
spatial resolution (Table 1). Sentinel 2A data is 
composed of 13 spectral bands in the VNIR and 
SWIR bands, including four bands at 10 m, six 
bands at 20 m and three bands at 60 m spatial 
resolution (Table 1). These data were 
downloaded for free from the USGS website 
(https://glovis.usgs.gov/) and Earth data (https://
earthdata.nasa.gov/).  
The objective of this study is to compare the 
possibility of ASTER, Landsat 8 OLI and, 
Sentinel 2A multispectral sensors for the 
lithological mapping in the Alagbayan area of 
Dornogobi province. In this study, Principal 
Component Analysis (PCA), Band ratio (BR) 
and Support vector machine (SVP) methods 
have been carried out to identify lithological 
units of the area based on the previous 
geological map and thin section studies of rock 
samples.  
 

GEOLOGICAL SETTINGS 
Geologically, Alagbayan area is located in the 
eastern part of the Gobian Tenger Uul Block 
(Fig. 1A ) (Tomurtogoo, 2017). According to the 

https://glovis.usgs.gov/
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Fig. 1. A. Territory of Mongolia; B. Tectonic division of Mongolia showing the study area (Tomurtogoo, 
2017); C. Landsat 8 OLI natural color composite image (RGB:432); D. ASTER false-color composite image 
(RGB:632) of study area which marked in red polygon  

State Geological Map of 1:200 000 scale, the 
area mainly contains metamorphic rocks of 
Paleoproterozoic and Mesoproterozoic Khutag-
Uul metamorphic complex and Norovzeeg 
formation, which intruded by Neoproterozoic 
intrusive rocks, and covered by Paleozoic 
sedimentary and volcanic formations (Fig. 2).  
Paleoproterozoic Khutag-Uul (PPhu) 
metamorphic complex, which is considered to be 
one of the basement units of the Gobian Tenger 
Uul block, is widely distributed in the 
southwestern and central part of the study area. It 
is about 4-5 km wide and 24 km long extending 
from Khoshuu Tsav Mountain to somewhat 
beyond to Ukhna Sair Tolgoi. It dominantly 
consists of gray, dark gray gneisses, granite-
gneisses, brownish-yellow marble limestone, 
carbonaceous sandstones, and amphibolite (Fig. 
2). Moreover, it is intruded by small to medium-
grained granite, granodiorite, diorite of the 
Neoproterozoic Kharangad complex (ɤ2NP2h) 

(Fig. 3A) which appears as veins or sills and is 
unconformably overlain by Baruungoyot 
formation (K2bg) in the southern part. Khutag-
Uul complex is bounded by the fault to the north 
with Norovzeeg formation (MP2-3nz) (Fig. 2) 
which is dominated by gneiss, granite-gneiss, 
schist, amphibolite, and calcareous sandstones 
(Fig. 3C). Khutag-Uul complex and Norovzeeg 
metamorphic formation, which have not been 
studied by geochronological research yet and are 
mainly composed of gneiss, have been classified 
differently. For instance, according to 
Bumburuu et al. (2005), the Khutag-Uul and 
Norovzeeg formations were classified into 
different formations, but in the 1: 500 000 
geological map, they are distinguished by two 
Paleozoic members.  
The Silurian unclassified sedimentary-
metamorphic sequence composed of metabasalt, 
siltstone, siliceous tuff, and sandstone, is 
extending from Baruun Khukh Ovoo Mountain 
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Fig. 2. Geologic map of the study area extracted from UGZ  1:200 000 geological mapping project (K49-I) 
(Bumburuu et al., 2005)  
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Fig. 3. The field photographs of the study area during fieldwork. (A) The contact between granite gneiss 
from Paleoproterozoic Khutag-Uul metamorphic complex and granite massif from Kharangad complex; (B) The 
contact between Tsagaansuvarga formation and siltstone of the Silurian unclassified formation; (C) Garnet gneiss 
of the Norovzeeg formation; (D) Granite sample SM26-7; (E) Siltstone sample SM26-2; (F) Limestone of the 
Khutag-Uul formation, sample SM27-11  

to Khonich Tolgod and is 0.8-1.2 kms wide and 
13 km in length. It is adjoined with 
Sainshandkhudag formation which consists of 
two members Tsagaansuvarga (C1cs) and 
unclassified (C1ss) formation bounded by the 
faults (Fig. 2). Tsagaansuvarga (C1cs) formation 
(Fig. 3B) is spread in a small area and mainly 
consists of thin layers of dacite, meta-andesite, 
interbeds of the schist, and sandstone with 
rhyolite sequence. In the northwestern part of 
the study area, unclassified Carboniferous (C1ss) 
formation unconformably overlies 
Tsagaansuvarga formation, which a volcanic 

sequence consists mostly of basalt, andesite, and 
their tuff. Lower and Upper Cretaceous 
sediments are widely distributed in the study 
area. They are classified into Manlai (K1mn), 
Shinehudag (K1sh), Khukhteeg (K1ht), 
Sainshand (K2ss), and Baruungoyoot (K2bg) 
formations. The sediments of these formations 
usually consist of sandstone, conglomerate, 
gravel and clay (Fig. 2) (Bumburuu et al., 2005).  
 

MATERIALS AND METHODS 
The fieldwork was carried out during September 
2019 and May 2020 to collect rock samples 
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Data Acquisition Data Cloud cover 

Landsat OLI 8 4/23/2020 0.0 

ASTER L1B 9/21/2002 0.0 

Sentinel 2A 9/18/2020 0.0 

Table 2. Multispectral data used in this study  

from Silurian unclassified formations, 
Norovzeeg formation and Khutag-Uul 
metamorphic complex, Kharangad intrusive 
complex in this area. We should mention that 
the former fieldwork was carried out within the 
framework of the project "The compilation of 
the State Geological Map at the scale of 1: 200 
000 in the K sheet of Mongolia" whereas the 
latter fieldwork was achieved within the 
framework of “The basement and cover 
complexes of the Khatanbulag and South Gobi 
Massifs: geological development and 
mineralization” project implemented by the 
Institute of Geology, Mongolian Academy of 
Sciences.  
The methodology of multispectral data used in 

this study is summarized in the flowchart 
(Fig.4). Three types of cloud-free multispectral 
data Sentinel-2A, ASTER, and OLI 8 (Table 2) 
(UTM Zone 49N), as well as thin sections 
analysis which was conducted with the samples 
collected from the fieldwork employed in this 
study. After preprocessing, lithological units 
were classified using image enhancement and 
processing methods including Principal 
Components Analysis (PCA), Band ratio (BR) 
and Support Vector Machine (SVM) supervised 
classification technique  
 
Petrography. Thirty thin sections of the 
sedimentary, igneous and metamorphic rocks 
were investigated using a petrographic 

Fig. 4. Flowchart of the methodology  
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microscope at the Laboratory of Petrography, 
Institute of Geology, Mongolian Academy of 
Sciences. 
 
Preprocessing. The preprocessing stages 
included radiometric and atmospheric 
corrections of the raw data and followed by the 
Gram-Schmidt Pan-sharpening method that 
sharpens multispectral bands using high spatial 
resolution data (panchromatic band 8 for OLI; 
band 3 for ASTER) in order to create bands 
with a spatial resolution of 15 m. For ASTER 
and Landsat data, FLAASH (Fast Atmosphere 
Analysis of Spectral Hypercubes) was 
performed on the VNIR and SWIR bands using 
ENVI 5.3 software. Concerning Sentinel 2A 
data, the radiometric, atmospheric and 
resampling processes were automatically 
performed using the Sentinel Application 
Platform (SNAP) software by ESA (The 
European Space Agency) (Ge et al., 2018; 
Bentahar et al., 2020). Then 13 bands of 
Sentinel were layer stacked to one file and 
converted into ENVI. After preprocessing, three 
multispectral images have been resized between 
latitudes 43°35’N to 43°45’N and longitudes 
108°30’E to 108°45’E. The final images of 
satellite data were imported as GeoTIFF files 
into the ArcGIS 10.7 software in order to add 
geological boundaries.  
 
Principal component analysis (PCA) is one of 
the most effective processing methods of 
multispectral data which is widely used in 
geological studies and lineaments mapping 
(Adiri et al., 2016; Amer et al., 2010; Bentahar 
et al., 2020; Çörtük et al., 2020). It operates the 
information in the original raw image to a 
smaller number of bands called principal 
components (PCs) (Sabins, 1987; Adiri et al., 
2016). In other words, A PC transform creates a 
smaller dataset from multiple bands, and it 
rotates them so the data variance is maximized 
(Chuveico., 2016). 
 
Band ratio (BR) is a very effective method for 
increasing the contrast of particular features 
which could not be distinguished from the 
original image data (Rowan and Mars, 2003; 
Çörtük et al., 2020). Therefore, this method is 

widely used in lithological and alteration 
mapping (Rowan and Mars 2003; Adiri et al. 
2016, Pour et al., 2019). Generally, it divides a 
band by another band (in the simplest case) 
based on the object’s spectral signature (Adiri et 
al., 2016). Based on the spectral characteristics 
of rocks and minerals, different types of band 
ratios have been generated for lithological units. 
To illustrate, Rowan et al. (2003) recommended 
ASTER band ratio of (band 6 + band 8)/band 7 
to identify carbonate rocks based on Ca-CO3 
spectral absorption, Adiri et al. (2016) have 
studied Landsat 8 OLI band ratios of 6/5, 5/4, 
4/7 for clay, alluvium and schist. The majority 
of the previous studies have used ASTER and 
Landsat OLI data for the BR technique (Rezaei 
et al., 2019; Ourhzif et al., 2019; Hamimi et al., 
2020, Çörtük et al., 2020). That is the reason 
why we only used this method on ASTER and 
Landsat data. 
 
Support Vector Machine (SVM), which was 
initially invented by Vapnik in 1979, is one of 
the most widely used supervised classification 
methods for lithological mapping (Platt, 1998; 
Adiri et al., 2016; Ge et al., 2018; Bachri et al., 
2019).  The principle mechanism of SVM is 
based on a hyperplane that separates two classes 
including a set of positive examples and a set of 
negative and maximizes the margin between 
these two classes (Platt, 1998; Bentahar and 
Raji., 2020). SVM requires the selection of 
regions of interest that represent different 
lithological units in the study area. Region of 
interests, also called training samples, are 
defined based on petrography analysis and 
geological map in this study.  
 

RESULTS AND DISCUSSION 
 
Petrography 
We classified rock samples into six groups 
based on their petrographic characteristics as 
following: 1-Sandstone (unclassified Silurian 
formation); 2- Metabasalt (unclassified Silurian 
formation); 3- Limestone; 4-Granite (Kharangad 
intrusive complex); 5- Garnet-biotite gneiss; 6- 
Garnet-biotite-muscovite schist (Fig. 5). 
Petrographic studies were used to apply the 
SVM algorithm in this study.  
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Fig. 5. Representative microphotographs of rocks from the Alagbayan area. A) Sandstone (sample SM26-2), 
B) Metabasalt (sample SM26-6), C) Limestone (sample SM27-11), D) Granite (sample SM26-7), E) Garnet-biotite 
gneiss (sample SM27-1), F) Garnet-biotite-muscovite schist (sample SM27-4). Abbreviations: Q - quartz, Pl - 
plagioclase, And - andesite, Carb - carbonite, Epi - epidote, Chl - chlorite, Ser-sericite, Cal - calcite, Kfs - K-
feldspar, Bi - biotite, Gr - garnet, Mus - muscovite. All photomicrographs are under cross-polarized light.  

Medium to coarse-grained sandstone (sample 
SM26-2) is made up of fr amewor k grains (70-
75%), matrix, and cement. Additionally, it 
comprises sub-angular to angular grains and is 
generally poorly sorted. The framework grains 
dominantly include plagioclase, quartz, epidote 
and in minor sericite carbonate and andesite 
fragments. Its grain size ranges from 0.1-1.25 
mm. The matrix, which constitutes around 

between 10 and 15% of the overall composition, 
is mostly silicate minerals such as quartz and 
plagioclase (Fig. 5A) 
Metabasalts (sample SM26-06; SM26-05) are 
mainly composed of plagioclase (40-45%), 
chlorite, epidote (25-30%) whereas secondary 
minerals are sericite (8-10%), quartz (8-10%), 
carbonate (3-5%) with a minor amount of 
muscovite aggregates. The rock is 
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Table 3. The characteristics of spectral bands of Landsat 8 OLI and ASTER  

PC bands Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

PC1 0.124847 0.148538 0.24966 0.365393 0.459118 0.538837 0.515143 

PC2 0.301287 0.313623 0.340048 0.38247 0.363199 -0.39202 -0.51319 

PC3 -0.39938 -0.38935 -0.2312 0.106444 0.426884 0.387469 -0.5401 

PC4 0.330993 0.256257 0.177331 -0.12521 -0.44134 0.63569 -0.42282 

PC5 -0.39235 -0.28259 0.463695 0.565717 -0.47991 -0.02792 0.0075 

PC6 0.336421 -0.02427 -0.68949 0.603159 -0.21609 0.007048 0.017012 

PC7 0.597877 -0.76281 0.216162 -0.09676 0.057242 -0.03035 0.019653 

Fig. 6. A) PC2, B) PC3 images of Landsat OLI data  

hypidiomorphic in texture and strongly altered 
which makes it difficult to make clear the 
original rock (Fig. 5B). 
Limestone (sample SM27-11) (Fig. 3F). 
Calcite, epidote, quartz are the minerals 
presented in thin sections. The minerals are 
subhedral and anhedral forms. Moreover, the 
majority of the calcite grains are light brown in 
color and 0.25-1 mm in size. It displays 
rhombohedral cleavage and some grains show 
polysynthetic twinning. The rock is intruded by 
a 0.2-0.5 wide epidote vein which has a 
greenish to bluish interference color (Fig. 5C).  
Granite (sample SM26-7) (Fig. 3D) consists of 
quartz (60-65%), plagioclase (20-25%), K-
feldspar (8-10%), biotite (5-8%) and ore 
minerals as accessory minerals. The rock is 
granoblastic in structure and xenomorphic in 
texture. The grain size of quartz is between 0.25 
and 1.5 mm and euhedral form. Plagioclase, as 

well as K-feldspar are 0.25-0.75 mm in length 
while the grain size of biotite ranges from 0.05-
0.2 mm (Fig. 5D).  
Garnet-biotite gneiss (sample SM27-1) is 
medium to coarse-grained and mainly composed 
of quartz (60-65%), plagioclase (10-15%), 
biotite (15-20%) and a trace amount of garnet (5
-10%). The grain size of quartz is up to 1.25 mm 
with serrated margins. Plagioclase shows 
polysynthetic twinning and grain size ranges 
from 0.2-0.75 mm. Biotite exhibits brown and 
subhedral and is about 0.3-1.0 in length. Garnet 
is euhedral and 0.2-2.2 in size (Fig. 5E).  
Garnet-biotite-muscovite schist (sample 
SM27-4) is fine to medium-grained and 
consists of quartz (50-55%), muscovite (30-
35%), garnet (8-10%) with minor amounts of 
biotite-chlorite (5-10%). The rock is strongly 
deformed and xenomorphic in texture. Garnet is 
euhedral and from 0.25 to 1.25 mm in size. The 
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Fig. 7. RGB color composite of PC images Landsat OLI (PC4, PC3, PC2) 

grain size of aggregates of biotite and chlorite 
ranges between 0.05-0.1mm (Fig. 5F).  
 
Principal component analysis (PCA) 
To discriminate the different rock units within 
the study area, the PCA method was applied to 
the ASTER and Landsat OLI images and results 
are presented in Fig. 5- Fig. 8. We also used this 
method on Sentinel satellite imagery, but did not 
include it in the results section because they did 
not show good results compared to the other two 
data. 
In this study, a standard transformation of the 
PCA has been applied by using ENVI 5.3 
software utilizing VNIR-SWIR bands of 
Landsat 8 OLI. In the PCs images, geological 
formation is mapped by bright pixels if the 

eigenvector values are positive in the band. 
Conversely, if the value is negative, it will be 
mapped by dark pixels (Çörtük et al., 2020). 
According to the eigenvectors calculated from 
Landsat (Table 3), in PC2, Ulgii formation 
which mainly consists of trachyte and 
trachyandesite may be distinguished by bright 
pixels with a positive value (0.38247) in band 2 
(Fig. 6A). Moreover, PC3 shows a negative high 
value in band 7 (-0.5401) which can be indicated 
by the Silurian unclassified sedimentary-
metamorphic sequence (S) (Fig. 6B). The 
alluvium is mapped by bright pixels in the same 
PC with a high positive value of 0.426884 (Fig. 
6B). Therefore, the images consist of PC4, PC3, 
and PC2 in the RGB were chosen as an effective 
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Table 4. The matrix of eigenvectors for PCA calculated from ASTER data  

Fig. 8. A) PC3, B) PC6 images of ASTER  

indicator for different lithological units (Fig. 7) 
where Cretaceous sediments mainly appear as 
neon green whereas J2ul formation is shown in 
blue. Some parts of the Khutag-Uul 
metamorphic complex are shown in mixed dark 
purple color while quaternary sediments can be 
distinguished by their light purple color. It is 
obvious that this PC band combination is 
helpful to discriminate Silurian and Jurassic 
formations where S appears dominantly dark 
tones and J2ul are indicated by blue color. Two 
members of Sainshandkhudag formation are 
distinguished from each other by yellow and 
light blue tones. Nevertheless, limestone and 
sedimentary rocks from Kharnuden formation 
have not been mapped in the PC image of 
Landsat data (Fig. 7). 
Turning to the eigenvectors extracted from the 
PC images for the ASTER data (Table 4), rocks 
of J2ul and C1ss which are dominantly 

composed of trachyte, andesite, trachyandesite 
(Fig. 2) are mapped by dark pixels where PC3 
has an absorption in band 3 with a negative 
value (-0.28939) (Fig. 8A). PC6, meanwhile, has 
an absorption in band 5 with a positive 
contribution (0.525784) where the Silurian 
formation is mapped in bright pixels (Fig. 8B).  
It can be seen from the RGB color composite PC 
image (PC3, PC2, PC6) (Fig. 9) that volcanic 
rocks from J2ul and C1ss formations are shown 
in green color while Silurian rocks are 
distinguished as purple color. Khutag-Uul and 
Norovzeeg formations are predominantly shown 
in pink color. Additionally, compared to PC 
images of Landsat data, alluvium sediments are 
more distinguished in PC images from ASTER, 
appearing in pale green. Despite their similar 
lithology, Cretaceous formations are indicated 
differently. K1mn formation is mapped in orange 
tone while K2ss formation mainly appears as 

PC bands Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9 

PC1 -0.314864 -0.496449 -0.777038 -0.197449 -0.049495 -0.046237 -0.052029 -0.041133 -0.051377 

PC2 -0.686541 -0.467061 0.531409 0.165298 0.00208 0.003418 0.020614 0.016603 0.008937 

PC3 -0.040217 0.046403 -0.28939 0.83428 0.254245 0.212331 0.216795 0.15044 0.19262 

PC4 0.646266 -0.727192 0.171288 0.075899 0.10273 0.084444 0.006923 -0.019711 0.017642 

PC5 0.073909 -0.007804 -0.025829 0.474142 -0.416033 -0.4411 -0.300784 -0.281806 -0.481104 

PC6 -0.068415 0.065651 0.003166 -0.007641 0.525784 0.450226 -0.410448 -0.463249 -0.358778 

PC7 -0.004198 0.001846 0.007245 -0.074541 0.576499 -0.507204 0.421247 0.142643 -0.454937 

PC8 -0.004926 0.002835 -0.000262 0.035696 0.366136 -0.537298 -0.454013 -0.15853 0.587103 

PC9 -0.007763 0.007001 0.000954 -0.014411 -0.080086 -0.049168 0.55435 -0.797195 0.219151  
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Fig. 9. RGB color composite of PC images of ASTER (PC3, PC2, PC6) 

Fig. 10. A. ASTER false-color composite image (RGB: 879); B. Grayscale images of ((band 7 + band 9)/
band 8) with limestone samples  
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brown and pink tone. Limestone is distinguished 
in the ASTER PC image, displaying bluish-
purple color (Fig. 9). 
 
Band ratio (BR)  
In this study, we have experienced the different 
types of band ratios recommended by other 
studies in order to improve the detection of 
various lithological units.   
Previous studies proposed that multispectral 
images, especially ASTER, play an important 
role in the detection of carbonate rocks (Rowan 
and Mars, 2003; Ninomiya, 2002). To detect the 
possibility of limestone using ASTER VNIR-
SWIR data, we used the band ratio suggested by 
Rowan and Mars (2003). According to their 
study, BRs of ((band 7 + band 9)/band 8), 

Fig. 11. False color composite image of ASTER: BRs (RGB: 7/6, 6/5, 6/4)  

representing CaCO3 absorption, correspond well 
with the limestone distribution in lithological 
mapping. Moreover, those carbonate rocks were 
mapped in light blue color in the false-color 
composite image of ASTER where band879 in 
the RGB (Fig. 10A, B). 
We also used BRs (7/6, 6/5, 6/4 as RGB) which 
were used for distinguishing gneiss and granites 
(Watts and Harris, 2005; Rezaei et al., 2019). As 
presented in Fig. 11, BRs (7/6, 6/5, 6/4 as RGB) 
results show that the metamorphic Khutag-Uul 
formation, and northeastern part of Norovzeeg 
formation were differentiated from the adjacent 
rocks by the purple color. On the other hand, 
two members of Sainshandkhudag formation, 
Silurian unclassified formation were highly 
distinguished with different colors. Granite 
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Fig. 12. (5/4, 4/7, 7/6 as RGB) false-color composite of Landsat image  

(Kharangad intrusive complex) and gneiss were 
not clearly distinguished, which may be due to 
the sparse exposure of the rocks. Previous 
studies have suggested (Watts and Harris, 2005) 
that the 7/6 band ratio is related to muscovite 
absorption, but it is difficult to comment that 
what kind type of rock is associated with this 
red area because we have not conducted field 
works in this part (Fig. 11). 
For Landsat data, after examining various band 
ratios, the most useful BR was a ratio, which 
Adiri et al. (2016) proposed, where BRs of 5/4 
to discriminate alluvium, 4/7 for schist and ratio 
of 7/6 were used to identify granite with biotite 
(Fig. 12). Here, Silurian formation is identified 
by a blue color while alluvium sediments appear 
pinkish. Compared to PC and SVM of OLI 

image, limestone is distinguished in this band 
ratio. Regarding Khutag-Uul and some parts of 
Norovzeeg formation, they are mapped by a 
pinkish color. But similar to other methods, 
granite and gneiss could not have been 
distinguished well (Fig. 12). 
 
Support Vector Machine (SVM).  
The output results of classification by SVM of 
Landsat, ASTER and Sentinel images are shown 
in Fig. 13. Moreover, Fig. 14 displays overall 
accuracy for different rock units conducted with 
three data. In this study, rock samples collected 
from the field and former geological map shown 
in Fig. 1 were used as a reference for the region 
of interests (ROIs). As mentioned earlier, we 
classified field samples into six categories based 
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Fig. 13. Results of SVM classification A) Landsat OLI; B) ASTER; C) Sentinel 2A  

Fig. 14. The classification accuracies of the Landsat, ASTER, Sentinel images using the SVM method 
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on the field observation and petrography 
analysis (Silurian metabasalt, sandstone, 
limestone, granite, Gr-Bt gneiss, Gr-Bt-Mus 
schist). In addition, the remaining lithological 
units that have not been included in the field 
study were selected for ROI based on the 
geological map (Fig. 2) (except Khamar 
Khuuvur and Del Ovoot formation, due to its 
small areas). Therefore, a total of 13700 pixels 
of ROI for the fourteen lithological units were 
conducted with Landsat OLI, ASTER, Sentinel 
2A images. After SVM images, the estimation 
of the classification accuracy was calculated by 
the confusion matrix using ROIs for ground 
truth. It shows what percentage of the ROI 
pixels were or were not contained in a resulting 
class (Fig. 14). The overall accuracy of the 
classification was 93.43% for Landsat OLI, 
91.7% for ASTER and 90.3% for Sentinel 2 
with kappa coefficients of 0.92, 0.90, and 0.8, 
respectively. As a result, compared to ASTER 
and Sentinel, Landsat 8 OLI illustrated a better 
capability for lithological units, especially in 
classifying Cretaceous formations, schist and 
quaternary sediments (Fig. 14). On the other 
hand, limestone was classified greater in 
ASTER and corresponded well with the result 
of band ratio presented in Fig. 10.  
However, there were few misclassifications of 
some lithological units obtained from Sentinel 
and Landsat images. To illustrate, trachyte and 
trachyandesite from Jurassic Ulgii formation 
were mapped southern part of the study area 
near the coal mine, but it had been mapped 
previously by the Cretaceous formation in the 
geological map (Fig. 2 and Fig 13A, C). 
Compared to the geological map, it can be seen 
that intrusive rocks mapped by red in Fig. 13 
were widely distributed in Landsat and Sentinel 
images. But during the fieldwork, there was not 
much intrusive exposure, thus we believe that 
this result was incorrectly classified in some 
areas.  

 
CONCLUSION 

In the present study, the lithological 
discrimination of the Alagbayan area which is 
located in Mandakh soum, Dornogobi province, 
has been achieved using Landsat 8 OLI, ASTER 
and Sentinel 2A. In detail, Principal component 

analysis (PCA), Band ratio (BR) and Support 
Vector Machine (SVM) have been used based 
on VNIR and SWIR regions. PCA 
transformation was carried out with images of 
ASTER and Landsat whereas Sentinel with 
these two data was used for SVM supervised 
classification. Additionally, instead of using 
spectral signatures extracted from satellite 
images, this study has been used different band 
ratios which suggested by other studies (Rowan 
and Mars, 2003; Watts and Harris, 2005; Rezaei 
et al., 2019; Adiri et al., 2016). In terms of PC 
analysis, both chosen PC band combinations of 
Landsat and ASTER show an excellent 
correlation with different formations such as 
Silurian, Carboniferous, Jurassic, and 
Cretaceous formations. Moreover, compared to 
PC images of Landsat data, alluvium sediments 
and limestone are more classified in PC images 
from ASTER, appearing in pale green and 
pinkish color. Similar to other studies, ASTER 
was a high potential data for carbonate rock in 
the band ratio technique. When it comes to 
supervised classification, former geological 
maps and thin section analysis were used as a 
reference for training samples. As a result, 
Landsat showed a better capability with an 
overall accuracy of 93.43% and a kappa 
coefficient of 0.92 but few misclassifications 
have been presented, especially for Landsat and 
Sentinel data. At the beginning of the study, one 
of the main goals was to identify the oldest 
metamorphic strata which are Khutag-Uul and 
Norovzeeg, by remote sensing techniques. But 
the study showed that most parts of Khutag-Uul 
complex and the southeastern part of Norovzeeg 
formation were generally mapped by the same 
tone in BR and PC analysis. On the other hand, 
granites and gneisses which are widely 
distributed in the above two formations could 
not be distinguished.  
In conclusion, lithological classification is an 
important application to facilitate geological 
mapping which takes a long time, high-costly 
process. In our future study, we are planning to 
use other image processing methods (e.g. 
Minimum Noise Fraction (MNF) and other 
Supervised classification techniques) to improve 
lithological discrimination.  
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