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Abstract: In 1803 Italian mathematician Malfatti posed the following problem how to pack three
non-overlapping circles of maximum total area in a given triangle. Malfatti originally assumed that
the solution to this problem are three circles inscribed in a triangle such that each circle tangent to
other two and touches two sides of the triangle. Now it is well known that Malfatti’s solution is not
optimal. The problem for the first time was treated as a global optimization problem in Enkhbat [9].
In this paper, we consider a new formulation of Malfatti’s problem called Malfatti’s constrained
optimization problem. The new problem is formulated as a nonconvex optimization problem with
nonlinear constraints. Numerical experiments were conducted on Python for the cases.
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1. Introduction

Malfatti’s Problem is a classical geometric optimization problem that deals with finding
the arrangement of three non-overlapping circles with maximum total area inside a given
triangle. Originally, it was assumed that the optimal solution would be three circles inscribed
in the triangle in such a way that each circle is tangent to the other two and also touches
two sides of the triangle. However, it was later discovered that this arrangement is not always
optimal in terms of maximizing the total area of the circles.

Figure 1: Malfatti’s Problem

Over the years, various methods and approaches have been employed to find the best
solutions to Malfatti’s Problem [1-8|. These methods include algebraic and geometric
approaches, as well as trigonometric equations and inequalities. In 1994, Zalgaller and Los
[3] demonstrated that a greedy arrangement, where the circles are arranged with a different

Copyright (© 2023 The Author(s). This is an open-access article distributed under the terms of the CC BY-
NC 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/).


https://doi.org/10.5564/jimdt.v5i1.3205
https://orcid.org/0000-0003-0938-1818
https://orcid.org/0000-0003-0999-1069
https://orcid.org/0000-0003-0938-1818
https://creativecommons.org/licenses/by-nc/4.0/

Iderbayar Shiilegbat

configuration, can yield a better solution. They used trigonometric equations and inequalities,
along with the concept of “rigid systems,” to find the optimal solution.

Non-convex optimization problems are generally more challenging to solve because they
involve functions that may have multiple local optima, making it difficult to find the global
optimum. In the context of Malfatti’s Problem, this formulation might consider various
geometric and trigonometric constraints on the circle arrangements within the triangle, which
are not easily amenable to standard linear optimization methods. It’s worth noting that
the problem of finding the best arrangement of circles in a triangle was treated as a global
optimization problem in Enkhbat [9].

Reference to “Malfatti’s constrained optimization problem” suggests that there may be
a new formulation of the problem that introduces non-convex optimization and nonlinear
constraints, which can make it more challenging and interesting from a mathematical and
computational perspective. Solving such a problem would likely involve advanced optimization
techniques and algorithms to find the optimal circle arrangement that maximizes the total
area while satisfying the specified constraints. This is an example of how classical geometric
problems can be extended and reformulated to incorporate modern mathematical optimization
techniques, opening up new avenues for research and exploration.

The goal in this formulation of Malfatti’s Problem would be to find the optimal
arrangement of non-overlapping circles within the given triangle, maximizing the total area
of the circles, while adhering to the specified nonlinear constraints. It’s a fascinating example
of how mathematical optimization can be applied to solve real-world geometric problems
with various complexities and constraints, and it may have applications in fields such as
architecture, design, or operations research.

In this paper, we consider a new formulation of Malfatti’s problem called Malfatti’s
constrained optimization problem. The problem is formulated as a nonconvex optimization
problem with nonlinear constraints.

2. Methodology

2.1. Malfatti’s problem and convex maximization

In the process of transforming Malfatti’s problem into an optimization problem, several key
steps must be undertaken. Initially, it is imperative to express the problem in equivalent terms,
which involves the utilization of convex sets, notably a ball and a triangle set. Subsequently,
the focus shifts towards establishing the conditions that govern the inscribed placement of
balls within a triangle set. To facilitate this endeavor, a set of relevant sets is introduced,
serving as foundational components for further analysis and problem formulation.

Let B(z,r) be a ball with a center € R™ and radius r € R,

B(z,r) ={y e R"[[ly —zf| < r} (2.1)

Assume that D is a compact set which is not congruent to a sphere and intD # (). Clearly,
D is convex set in R™. Let D be a polyhedral set given by the following linear inequalities.

D={yeR"{a’",y) <b;, i=1,m}, a' €R" b cR, (2.2)

here (,) denotes the scalar product of two vectors in R”, and || - || is Euclidean norm, a® #
o, i #j; 1,5 =1,m.

Theorem 2.1. [9] B (z,r) C D if and only if

(a',x) +r|a’|| <b;, i=Tm. (2.3)
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Now we formulate inscribed conditions of three balls into a triangle set.

Assume that intersections of interiors of these balls are empty. One of the balls is tangent
to other two but their centers don’t lie on the same line. At the same time, the anytwo balls
don’t intersect with each other.

Denote by c!(z1, 22), c?(z4, 25) and ¢®(27, x8) centers of three balls inscribed in a triangle
set D given by (2). Let x5, 26 and 29 be their corresponding radii. Malfatti’s problem following:

maxf = (23 4+ 22 + 23),

(a',u) + aslla’| <bi, e = (21,22), i=1,2,3,
<ai>v> + x6||ai|| < bi7 02 = (.'1,'4,555), i= 172337
<aiap> +x9||a’l|| < bi? 03 = (1’6,$7) ) = 172737

(w4 — $1)2 + (w5 — $2)2 — (3 + 1‘6)2

2

(
(
(
(
> 0, (
(
2
2

(z7 — 21)” + (w5 — 22)? — (23 + 29)° > 0,
(31‘7 — 374)2 + (373 - 375)2 — (376 + $9)2 >0, ( .10
x32>0, x>0, xz9>0. (2.11

The function f in (2.4) denotes a total area of the three balls. Thus, problem (2.4) — (2.11
becomes the convex maximization problem over a nonconvex set.

2.2. Malfatti’s constrained optimization problem

In this section, we extend Malfatti’'s problem as follows. Let the centers of the circles
included in the triangle lie on the given curves g;(c!), g2(c?), g3(c®). Malfatti’s constrained
optimization problem is the following:

g1(c') =0, g2(c®) =0, g3(c®)=0. (2.12)

g1(ch), g2(c?), g3(c®) — any functions. (2.4)—(2.12) is called Malfatti’s constrained optimization
problem.

Figure 2: Example: Malfatti’s constrained optimization problem

2.3. The Gekko Optimization Algorithm

The Gekko optimization algorithm is a powerful numerical optimization tool designed
for solving complex optimization problems across various domains, including engineering,
finance, and operations research. Developed to address both constrained and unconstrained
optimization challenges, Gekko leverages a combination of optimization techniques to
efficiently find optimal solutions.
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We used APOPT solver for Gekko. APOPT is a nonlinear programming solver used
in the Gekko optimization modeling language. Gekko is a Python library for optimization
and model predictive control. APOPT, or A Large-scale Approximate Networked Interior
Point Optimizer, is an optimization solver that focuses on large-scale nonlinear programming
problems. It’s particularly well-suited for solving mixed-integer and mixed-integer
nonlinear programming problems. The mathematics behind APOPT involves interior point
optimization techniques. Interior point methods are a class of algorithms used for solving
nonlinear programming problems. These methods iteratively move towards the optimal
solution by exploring the interior of the feasible region, as opposed to moving along the
boundary. The interior point optimization method:

Barrier Function: Interior point methods use a barrier function to penalize infeasible
points. This function increases as the solution approaches the boundary of the feasible region,
effectively guiding the optimization process toward the interior.

Central Path: The algorithm follows a central path, which is a trajectory in the feasible
region where the barrier function is minimized. The central path helps maintain feasibility
while moving towards the optimal solution.

Optimality Conditions: The algorithm seeks points that satisfy both the equality and
inequality constraints of the optimization problem. At the optimal solution, the first-order
optimality conditions (Karush-Kuhn-Tucker conditions) are satisfied.

Iterative Refinement: The algorithm iteratively refines the solution, adjusting the penalty
parameter and updating the search direction in each iteration until convergence is achieved.

3. The results

In computational experiments we used Gekko which is a Python library for optimization
and modeling of dynamic systems. It is commonly used for solving mathematical optimization
problems, particularly those involving differential equations and dynamic simulations. For a
test purpose, the triangle with vertices A(—4, —4), B(2,6) and C(6, —2) has been considered.
In this calculation, the initial approximation points are randomly taken, and the local solutions
are found. Now we have the following cases:

Case 1: gi(c'),g2(c?), g3(c®) — be the medians drawn from the three vertices of triangle
ABC.

maz f = m(af + x§ + 23),

—10z1 + 629 + .’ﬂg\/ﬁ < 16,

T1 — bTo + 23726 < 16,

2x1 + x2 + x3\/5 < 10,

—10z4 + 625 + 26136 < 16,

T4 — OT5 + x6\/% <16,

274 + x5 + 26VD < 10,

—10z7 + 625 + 29V/136 < 16,

o7 — bag + 2926 < 16,

2w + x5 + 9V5 < 10,

(24— 21)° + (25 — 22)° — (23 + x6)° > 0,
(z7 — x1)° + (w8 — x2)° — (23 + 29)° > 0,
(27 — 24)° + (25 — x5)° — (26 + 29)° > 0,

g1(ct) = 6x1 — 81y — 8, ga(c?) = 3wy + Txs — 4, g3(c®) = 97 — 25 — 12,
x3 >0, g >0, zg > 0.
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X1, X4, X7

Figure 3: Case 1

Case 2: gi(c') — is the line passing through sides AB and AC, gs(c?) — circle centered
on the vertex C, g3(ct) — parabola drawn close to the vertex B of ABC' triangle.

maz f = m(x3 + x5 + x3),

—10xz1 + 629 + Ig\/ﬁ < 16,

x1 — bag + 23v/26 < 16,

2x1 + o9 + 23V5 < 10,

—10z4 + 625 + 26136 < 16,

T4 — x5 + 2626 < 16,

2x4 + x5 + 376\/5 < 10,

—107 4 625 + 29136 < 16,

x7 — bag + x9V/26 < 16,

207 + xg + 1‘9\/5 <10,

(xa — 1) + (25 — 22)° — (23 + 26)° > 0,
(z7 — 1) + (25 — 22)° — (23 + 29)° > 0,
(27 — 24)° + (w5 — x5)° — (26 + 29)° > 0,
g1(c') =2z + 20 + 4, go(c?) = (x4 — 6)2 + (x5 + 2)2 — 16, g3(c®) = 22 — a5+ 7,
x3 >0, zg >0, xg > 0.
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Figure 4: Case 2

The performance of the proposed algorithm was tested on the above constrained Malfatti’s
problems. The programming code for the algorithm was written in Colab of python and run
online. The results are given for in Figure 5, 6.

F- Triangle = 44 l
Teirele = 30.60367

X2, X5, X8

—4 T T T
—4 =2 0 2 4 6
X1, X4, X7

Figure 5: Case 1 solution
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Figure 6: Case 2 solution

The figure 5 shows that the optimal solution for case 1 is the largest circle with the center
located on the obtuse side of the triangle, while the smallest circle is located on the acute
side. We have tested two cases of Malfatti’s problem. The results are given for each case in
Table 1.

Table 1: Ruselt
Case | Ratio/Percentage of packed area | Iteration | Computational time(s)
Case 1 69.553% 8 0,0115cex
Case 2 64.886% 9 0,0391cex

4. Conclusions

The 200 years old Malfatti’s problem was extended and viewed from a view point of the
convex maximization problem. We formulate a now global optimization problem based on
Malfatti’s problem by introducing constraints on the centers of Malfatti’s circles. In order
to solve the problem locally, we use Gekko package in python. Numerical experiments were
done for two cases of constraints. 69% and 64% of the total area were packed by 3 different
the circles. The case 1 corresponds to the largest circle of the 3 circles located on the obtuse
side of the triangle. The problem can be further extended for the high dimensional cases with
more than 3 circles. It will be considered in a next paper.
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MaabdaTThiH 3aarjaatai 60/1J10ro

[Tuitmsroare Mappbaap™ ™, Pyumparuitn Duxo6at

Hlunorcasx Yxaanor Axademu, Mamemamuk, moor MeETHOA02ULH TYPINIH, Yaaanbaamap 13330,
Momnzon yac

*Xoaboo bapux soxuoey: iderbayar sh@mas.ac.mn; ORCID!0000-0003-0938-1818

Oezyyanrutin ma029a94: Xynrson ascan: 2023.09.15; 3esweoopozdcon: 2023.10.01;
Hutimasedcon: 2023.12.26

Xypaanryii: 1803 onx anx Uranuitn maremarukd MaabdarT erericeH rypBaKuH XaMIHiTH
uxX Tajbaiitail, MABXIAXTYHTIdP rypBaH TOUPIHIT XIpPXIH Oalpiyyrax B3? ICIH GOJJIOTBIT
TaBbXK Oaiican 6eree HIXYY OOJIOIBIH MM/ Hb yPBaJKUHI OAarrcaH IypBaH TOUPIYY-
JIBIH TOMpOr Oyp HOree XO€p TOWPIHUNT, I'yPBaJIKHBI XOED TAJIBIT IIIYPrICIH OaifHa T'9K Y3CIH.
OH> Hb XapaaxaH OHOBUTON mmuiiy 6w Gaiican 6a [9] axkman anx MasnbdaTTsiH 6OIIOrBID
00/10X TJI00AJT OHOBUJIONBIH OOJIJTOTBIT TOMBEOK MUHANNT 0JI0X apra aJropuT™M OOJIOBCPY Y-
caH. DHAXYY cymasraans 6un MajbdarTeiH OOIJIOrBH IIIMHY TOMbEOJIO OyI0y Xe1e/IreeHT
MausbdaTTbiH 60/10TBII aBY y3C¢3H. Tyc 60/10r0 Hb IIyramMaH Oyc Xsi3raapJiaJrTail Tyarsp
Oyc OHOBYJIOJIBIH O0/T0T0 oM. TooH TyprmmaTeir Python m3sp xwuiican.

Tyaxyyp yrc: MambdarTeia 6071010, TyArap OyC OHOBYJION, TONPOr, TI'ypBaJl>KUH
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