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Abstract: Portfolio optimization plays an important role in investment sciences. We examine the
classical Markowitz model from a viewpoint of Pareto optimality. We consider a multi-objective
optimization problem by maximizing the return of a portfolio and minimizing risk. We show that for
appropriate weights, the Pareto optimal solution of the multi-objective optimization is a solution to
the problem of maximizing a portfolio growth rate. Numerical results were provided using Mathlab.
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1. Introduction

In 1990, Mongolia transitioned to a market economy, but the stock market is still in
its early stages of development, and people don’t always participate in trading. However,
since 2020, cryptocurrency has been traded, and people have become more interested in
various financial assets and investments. Therefore it is important for individuals and firms
to understand how to build a portfolio and how to maximize returns with minimal risk.
Especially, understanding the optimal portfolio from a mathematical point of view is crucial.
Markowitz’s theory is based on the fact that the risk of an investment portfolio consisting
of various financial instruments is lower than the investment risk of individual financial
instruments. The Markowitz problem provides the foundation for the single-period investment
theory. The problem explicitly addresses the trade-off between the expected rate of return and
the variance of the rate of return in a portfolio [1]. In multi-objective optimization, when there
are functions with opposing objectives, the optimal solution is called Pareto optimization.
Pareto-optimal solutions can be said to be multi-objective optimal solutions because it is
impossible to find an optimal solution without degrading one of the objectives. Therefore,
Pareto optimization and Markowitz theory together determine the optimal investment
portfolio. For our numerical experiment, taking into account the current economic situation,
we selected assets with increasing returns and calculated the optimal investment portfolios in
two ways. The first problem defines the optimal portfolio when shorting is possible, while the
second problem finds the optimal portfolio when investments have only longed. Shorting is
when an investor first borrows an asset, then sells it when the price is high, and then buys it
back when the price drops to repay the loan. Investors use this strategy when they expect the
price of the asset to fall. On the contrary, when an investor predicts that the price of an asset
will rise, he/she buys the asset and sells it when the price increases, which is called longing.
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2. Methodology

Assume that there are n assets. The expected rates of return are ry,rs,...,r, and the
covariance are oy;, 4,5 = 1,2,...,n. A portfolio is defined by a set of n weights z;,7 =
1,2,...,n such that >, #; = 1. Denote by 7 is the expected value of portfolio return,

Z?:l XTir; =T.

The Markowitz model is to minimize the variance of the portfolio [2]:
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Problem (2.1)-(2.3) is known as the convex minimization problem and is solved by the
Lagrange method [3]. Introduce the functions f; and f5 in the following:

n n
*E E Li0ijxyj,

i=1 j=1

n
fa= E TiTi,
i=1

fi

Now we consider the problem of minimizing variance and maximizing the return of the
portfolio. This problem is formulated as a multi-objective optimization as follows:

max f; = — Z Z Ti03;T; (2.4)

i=1 j=1
max fo = Zziri (2.5)
i=1

Recall the definition of Pareto optimal solutions for problems (2.3) and (2.4):
Definition 2.1. [4] Z € S is called a Pareto optimal point of the problem (2.4)-(2.5) if there
isno € S with

The Pareto optimal concept is the main optimality notion used in multi-objective optimization.
The main approach for finding Pareto optimal solutions is the weighted sum approach.
Therefore, one can introduce positive weights a; > 0, as > 0, so we can formulate the
corresponding scalarized optimization problem for problems (2.4)-(2.5).

max F' (z) = a1 fi (z) + a2 f2 (2) (2.6)
A relationship between Pareto optimal solutions and solutions of the scalarized problem can
be given by the following assertion.

Proposition 2.1. A solution x* to problem (2.6) is a Pareto optimal solution to the problem

(2.4)-(2.5).
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Proof. Let 2* be a solution to the problem (2.6), but is not a Pareto optimal solution of
problem (2.4)-(2.5). This means that there exists a point Z € S such that

fi (@) = fi(a7), Z—12wﬂfhfg( )>fy( ). Fed{l,2},
2

:Zaifi <Zazfz <Zazfl +f]( ) F(%)
i=1

i#]

This contradicts that z* is a solution to the problem (2.6).

On the other hand for a; = %, a9 = 1. It has been shown that F' is defined as

F= E TiTj — g g Ti0i5T
=1 j=1

is the growth rate of the portfolio [1]. Now we have the following two problems depending on
a short and long position. [J

Problem 1 (selling with Short):

max I’ = g ;T — E E TiTifT ;s

Jj=1 =1 j=1

Problem 2 (selling long):

max F' = g ;T — E E Ti0i5T

j=1 i=1 j=1

n

in:l’

i=1

z; 20, 5=1,2,...,n

Introduce matrix notations for these problems:

Ty 1 011 012 ... Oin

€2 T2 021 022 ... O2n
X = s T = s C =

T Ny Onl On2 -+« Onn

Problem 1 can be written as follows:

1
I&&g{F = (r,z) — §<Cx,:v>

where denotes the inner scalar product in R". C' > 0 is a positive definite symmetric matrix.
In order to solve problem 1, we write down the Lagrange function.

L(z,\) = (r,x) — %(C’m,:@ + X\ (Z x; — 1) + Ao (Z rix; — r)

=1 =1

Optimality conditions are
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dL
— =r—Cx+ M E+ X\r =0,
dx

Cr=r+ME+Xr, c=C (r+ME+ \or).
By analogy, Problem 2 can be written as:

max F = (r,z) — %(Cw,x),
<7‘,JJ> =T,

Z?:l Ty = 17

z; >0, 5=1,2,...,n

2.7)

Problem 2 in matrix form is )
max F = (r,z) — §<Cm,:v>

where, S ={z € R*"|> 1 wri =7,z =12, >0 }.
The Lagrange function for problem (2.7) is

L(z, A\, p) = (r,z) — %(Cm,@ + M (Z T — 1) + A2 (anl - r) - Z,ui:cj.
i=1

i=1 i=1
Since problem (2.7) has non-negative constraints, in order to solve the problem, we need to
use Conditional Gradient Method. Algorithm of this method is the following.

Algorithm CGM
Step 1: Choose an arbitrary point 2° € S, and set k = 0. Compute the gradient f’ (J:k)
Step 2: Solve the following linear programming sub-problem:
max(f'(z"), ).
Let Z* be a solution to this problem

(@), 74) = ma{£'(e*), 7).

Step 3: Compute a value of 7 as follows:
e = (f'(z*), 2" —a*).

Step 4: If ), = 0 then z* is a solution. Otherwise, go to step 5.
Step 5: Construct a direction h* as h* = z*F — zF.

Step 6: Solve one-dimensional maximization problem:

Jmax ¢ () = f(z" + ah®). (2.8)

Let aj be a solution to this problem:
(k) = max ().
Step 7: Construct a point z = z* + o, h*
Step 8: Set k:=k + 1 and z* := 2 and go to step 2.

Problem 2.8 can be solved analytically:
1
pla)=f (:rk + ahk) = (r,z* + ah®) — §<C(xk + ahk), 2% + ah¥) =
1 1
= (r,z") + a(r,z*) — §<ka,xk> — a(Cz® hky - §a2<Chk,hk).

Note that if (Ch¥, h¥) then h* = 0 which implies ¥ = z* and 7, = 0. Thus, z* = 2* is a
global solution to the problem.
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If (AR*, hF) then ¢ () is a quadratic concave function that reaches its maximum value at a
point a: ¢’ (o) = 0.
Hence we have

(r, h®Y — (Cz* hFY — a(ChE, h*) — a(Ch* hF) =0,
<T_C$kahk> <f/(xk)7hk>

*

B (o7 A S e/ T A S
e (me)
(oINS

Now we can choose «y, as follows:

The convergence of the Algorithm is given by the following assertion.

Theorem 2.1. [5] The sequence {:z:k,k =1,2,.. } generated by Algorithm-CGM converges
to a global mazimum point of the problem.

mligloo zh =g (2.9)

where, f(x*) = maxges f ().

3. The results

3.1. Numerical Experiment

For the numerical experiment, we used the last 6 years of price data [6] of 7 assets in Table
1. In light of the current economic downturn, we included the types of assets that have rising
rates, such as a treasury bond, a volatility index, USD/JPY rate, a coal company stock, and
three kinds of funds. The Conditional Gradient Algorithm was implemented in Matlab.

Table 1: Assets in the Portfolio.

Assets | U.S Exchangg CBOE Whitehaven| Cambria Catalyst/ LoCorr
Treasury | rate for | Volatility| Coal Value and | Millburn Market
Yield, USD Index Limited Momentum| Hedge Trend
10 years | and ETF Strategy Fund, Class
JPY Fund, Class | A
C
Tickery "TNX,zj JPY = | "VIX,z5 WHITF,z}| VAMO,zf| MBXCX,zf LOTAX,x%
X, 5

Covariance and expected rates of return matrixes are given as follows:

1295 0.3 (6.38) 021  1.02 1 0.02
0.13 024 (0.12) 0.07 (0.01) 0.02 0.01
(6.38) (0.12) 68.74 (2.44) (4.7) (4.54) (1.96)
C=10"*%| 021 007 (244) 11.27 047 031 022 |,
1.02 (0.01) (47) 047 171 059 028
1 0.02 (4.54) 031 059 086  0.32
(0.02) 0.01 (1.96) 022 028 032 0.74
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0.0005
0.0002
0.0005
r=| 0.0011
0.0001
0.0003
0.0002

The maximum growth rate of Problem 1 is 0.07% with the following asset weights:

27%
—36%
9%
X = 79%
—100%
100%
20%

The maximum growth rate of Problem 2 is 0.06% with the following asset weights:

the

20.4%
0%
7.2%
X = 1%
0%
1.5%
0%

4. Conclusions

We have shown that the multi-objective optimization problem which consists of maximizing
return of the portfolio and minimizing the risk of the portfolio reduces to the problem of

maximizing the growth rate of the portfolio. Numerical experiments have been done.
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Xypaanryii: XopoHT® OpPYYJIAJITHIH IMAHXKIDX yXaaH] OArlblH OHOBUJION YyXaJ Yypar Iyii-
RTTIRT. By su9xyy axkmig MapKOBUIIBIH COHTOMOT 3arBapbir [lapeTornith OHOBYIONITOM
XOJIOOH, GATTBIH OTOOKUNT HIMITIYY/IIX, IPCIJIANAT 6aracraxbliH TYJIII OJIOH 30PUJITOT OHOBY-
JIOJIBIH OOJIOTBIT aBY y3/193. OJIOH 30pUJITOT OHOBWIOJNBIH [lapero muiiryy Hb OArIbIH XaM-
TUIH UX ©COITUNUT TOMOPXOMIIOX acyyAAJIIL Xapuy OTaer rayaruiir 6ur xapyysiaa. ToOoH yp JyHTD
Marmab ammuriian rapracat.

Tyaxyyp yrc: Mapkosuruita ouoJ1, OJIOH-30PUITOT OIITHMU3AIIA
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