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ABSTRACT. This study presents the estimations of the 3D motion of a moving 

object in an image sequence taken from a monocular camera through linear and 

non-linear equations and determines the differences between linear and non-

linear algorithms in terms of theoretical level and estimation accuracy with noisy 

point correspondences. Firstly, we investigated linear and non-linear algorithms 

for determining 3D motion at the theoretical level. Second, we estimated the 3D 

motion of the moving object in an image frame at two different instants of time 

with feature point correspondences in real time. Finally, we implemented an 

accuracy analysis of the results from the linear and non-linear estimations. We 

showed that the non-linear approach produced more accurate results than the 

linear approach from noisy point correspondences.  

Keywords: image sequences, motion parameters, motion estimations, 

linear and non-linear equations 

1 Introduction 

Determining three-dimensional (3D) motion parameters from image sequences has 

been a challenging task in various applications for a long time. Motion parameters are 

determined through linear and non-linear algorithms by establishing point 

correspondences extracted from two or more views. Generally, non-linear algorithms 

solve the problem of non-linear least squares iteratively. Iterative methods may 

converge to a local but not global minimum with a good initial guess or may diverge at 

all. In a number of cases, linear algorithms have been formulated with eight or more 

correspondences. Linear algorithms solve linear equations that give a unique solution 

except in degenerate cases. In all practical situations, non-linear and linear algorithms 

fail to find the unique solution for many problems such as initialization, degenerate 

spatial configuration, noisy data, any relative motion between the camera and the scene. 
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Various solutions and analyses of results from estimation of motion using the point 

correspondences have introduced sensitivity of their solutions to image noise, their 

robustness, computation efficiency, and accuracy against state-of-the-art methods for 

synthetic and real image data.  

Among them, the linear algorithm for determining motion and structure for a planar 

surface using point correspondences between two images [1] [2] and minimal non-

iterative relative pose solvers under planar motion constraint [3] were discussed. The 

effectiveness of the proposed algorithms was demonstrated with an assessment of the 

accuracy of the solutions with the synthetic data and real image sequences. They also 

indicated degenerate configurations in the presence of noise. Robustness of pose 

estimation related to measuring error of image coordinates [4] and sensitivity of linear 

solutions of the 3D motion estimation problem to image noise [5] were analyzed. 

Iterative algorithms for camera pose estimation problem [6] [7], robust registration of 

2D to 3D points sets by using non-linear optimization [8], the efficient algorithmic 

solution to the classical five-point relative pose by using numerical algorithm [9], 

iterative pose estimation using coplanar feature points [10] and a two-step robust direct 

method for six-dimensional pose estimation [11] were developed for various 

applications. A new algebraic method to solve the perspective-three-point (P3P) 

problem [12], the numerical stability of the P3P estimation problem [13], 

decomposition algorithms to solve the P3P problem [14], a novel closed-form solution 

to the P3P [15], and a non-iterative solution to the perspective-n-point (PnP) problem 

for estimation of the pose of a calibrated camera from 3D-to-2D point correspondences 

[16] were presented. Analyses and results of the methods demonstrated that the 

precision and accuracy were comparable to the state-of-the-art methods. A closed-form 

solution to the least-squares problem of absolute orientation [17] and linear algorithms 

by decomposition [18] [19] was introduced. Experiments were carried out on 

comparing the performance of the algorithms with several existing algebraic and linear 

methods. The estimation errors were increased to the translation direction if the object’s 

translation is small along the optical axis or the target object moves closer to the camera 

[20] [21]. The method to estimate 3D motion through non-linear least square equations 

for 2D to 3D point correspondences [23], a comparison of linear methods in computer 

vision and non-linear methods in photogrammetry for 2D to 2D point correspondences 

[25] were published by the authors of this study. 

We have seen that no more results for investigating the differences in estimation 

accuracy between the linear approach using 2D to 2D point correspondences and the 

non-linear approach using 2D to 3D point correspondences are available from the 

previous analyses. In this paper, we analyzed how errors in the linear and non-linear 

estimation of motion parameters are related to the noisy correspondences. We used a 

single camera to estimate motion parameters since using a single camera has arisen for 

users in consumer electronics. Motion models are mathematically expressed with an 

epipolar constraint for all solutions under perspective geometry. First, we present 

mathematical formulations and general principles for linear and non-linear models. 

Next, we introduce the implementation steps for estimating motion parameters from 

image sequences. Third, we point out the differences in the solutions with the test 
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datasets at the experimental level and analyze the relationships between errors and 

noisy correspondences.  

The paper is organized as follows. Motion models of the proposed solutions are 

presented in Section 2. Processing techniques to implement estimations are described 

in Section 3. The comparison results with test datasets are discussed in Section 4. The 

conclusions are summarized in Section 5. 

2 Investigation of models for linear and non-linear 

algorithms 

Consider an object viewed by a camera. Fig.1 shows a basic perspective geometry for 

the camera and object. Object space coordinate, 𝑝 = (𝑥, 𝑦, 𝑧) at time 𝑡1 moves to      

𝑝′ = (𝑥′, 𝑦′, 𝑧′) at time 𝑡2. Image space coordinates are denoted by 𝑃 = (𝑋, 𝑌, 1) and 

𝑃′ = (𝑋′, 𝑌′, 1). The points 𝑝 and 𝑝’ on the surface of an object are projected at the 

points 𝑃 and 𝑃′ under perspective projection, respectively. Thus, the image point 𝑝𝑖 is 

at 𝑃𝑖
′ whose coordinates are given by [24]  

 𝑋𝑖
′ =

𝑥𝑖
′

𝑧𝑖
′  and 𝑌𝑖

′ =
𝑦𝑖

′

𝑧𝑖
′   (1) 

 

Figure 1. Perspective geometry for imaging. 
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Then, 3D coordinates 𝑝𝑖
′ are related to 𝑝𝑖 by 

𝒑𝒊
′ = 𝑹𝒑𝒊 + 𝒕                              (2) 

Our goal is to estimate rotation 𝑅 and translation 𝑡 from the 𝑁 point correspondences. 

Firstly, combining (1) and (2), we get 

𝜀 = ∑ {(𝑋𝑖
′ −

𝑟11𝑥𝑖+𝑟12𝑦𝑖+𝑟13𝑧𝑖+𝑡𝑥

𝑟31𝑥𝑖+𝑟32𝑦𝑖+𝑟33𝑧𝑖+𝑡𝑧
)

2

+ ( 𝑌𝑖
′ −

𝑟21𝑥𝑖+𝑟22𝑦𝑖+𝑟23𝑧𝑖+𝑡𝑦

𝑟31𝑥𝑖+𝑟32𝑦𝑖+𝑟33𝑧𝑖+𝑡𝑧
)

2

}𝑁
𝑖=1        (3) 

Eq.(3) is nonlinear in the nine unknowns represented by three unknowns of the rotation 

matrix (ω, φ, κ), three unknowns of the translation (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) and three unknowns of 

3D coordinates (𝑥, 𝑦, 𝑧). This non-linear least square problem can be solved iteratively. 

To converge to the right solution, the estimation of these non-linear equations should 

start with a good initial guess. To overcome ill-conditioned convergence problem of 

these non-linear equations, good initial values were provided from a para-perspective 

projection model using 2D to 2D point correspondences developed by Tomasi and 

Kanade [22]. After estimation of initialization, the initial values of six motion 

parameters and 3D object-space coordinates (𝑥, 𝑦, and 𝑧) are provided, then equation 

(3) will be solved to find motion parameters as presented in detail [23]. Secondly, given 

eight or more points correspondences, a linear algorithm is devised by reformulating 

Eq.(2) under coplanarity conditions [24]. 

(𝑃′)𝑇𝐸𝑃 = 0 and [𝑋′ 𝑌′ 1]𝐸 [
𝑋
𝑌
1

] =0                             (4) 

where 𝐸 is a 3𝑥3 matrix defined as 

𝐸 = [

𝑒1 𝑒2 𝑒3

𝑒4 𝑒5 𝑒6

𝑒7 𝑒8 𝑒9

]                       (5) 

Eq.(4) is linear and homogenous in the nine unknowns. Once 𝐸 is determined, 𝑅 and 𝑡 

can be determined uniquely. In practice, since the point correspondences may be 

inaccurate and noisy, RANSAC (Random sample consensus) can be weed out these 

outliers to obtain a good solution. In practice, when the point correspondences are 

noisy, various least-squares techniques can be used. 

3 Methodology 

The implementation steps of the non-linear motion model are described in Fig.2. We 

assume N feature points in a template region extracted from the first frame and track 

them to the next each F frame (pf1 … pfn| f = 1, … , F, n = 1, … , N). In non-linear case, 

we need at least three or more frames for determining 3D motion of the moving object 

due to the factorization process [22]. In other words, motion parameters are estimated 

by using the corresponding points between a template region at time 𝑡1 and the fifth 

frame at time 𝑡2.  
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Firstly, we extract the whole or parts of the moving object as a template region. 

Secondly, SIFT feature extractor can be used to extract the N feature points for the 

template region. Thirdly, once capturing a new frame, we compute the feature points 

for this frame. The corresponding points (pf1 … pfn)  between the new frame and the 

template region are calculated with a Brute Force matcher. The outlier corresponding 

points are eliminated by RANSAC based robust method. The steps as mentioned before 

can be repeated for five consecutive frames.  

We used the corresponding points for entries of the 2F × N measurement matrix 

W to calculate initial values of the Eq.(3) through the para-perspective factorization 

method [23]. The overdetermined 2N equations for six unknown variables 

(𝑡xf, 𝑡yf, 𝑡zf, ω, φ, κ ) are solved from the given corresponding points in the camera 

coordinate system for each frame.  

 

 

Figure 2. Process flow of the non-linear motion model 

 

Figure 3. Process flow of the linear motion model [25] 
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Now, we present the implementation steps of the linear motion model for 

determining 3D motion parameters as described in Fig.3. In the linear case, motion 

parameters are determined by using corresponding points between a template region at 

time 𝑡1 and the second frame at time 𝑡2. 

Firstly, after extracting the template region from the first frame, the feature points 

for the template are computed by using SIFT feature extractor. Secondly, once a new 

frame is captured, the feature points is extracted for this frame. The corresponding 

points between the template and the new frame are calculated with a Brute Force 

matcher by eliminating wrong matches with the RANSAC based method. Thirdly, 

motion parameters are estimated after accumulating all processing steps for two 

consecutive frames. 

4 Experiment analysis 

In this section, we discuss the performances and results of the 3D motion estimation 

from the non-linear and linear algorithms. We performed the experiments with the 

Intel(R) Core (TM) i7, CPU 3.0 GHz, 12MB RAM computer, and a Microsoft LifeCam. 

We used the C++ programming language with Visual Studio programming tool, 

OpenCV library, and OpenGL graphic library. The 320x240 video image sequences are 

taken from the single calibrated camera. We examined motion results for a real dataset 

created from real image sequences and a synthetic dataset created from the OpenGL 

library. The corresponding points from the synthetic sequences were prepared with 

known motion parameters. 

Firstly, we draw a cube in virtual space by choosing the largest focal length for 

keeping it in the field of view throughout sequences under perspective projection. The 

edge length of the cube is ten. We created the synthetic sequences by rotating the cube 

at 20 degrees around the 𝑥 and 𝑦 axes. The cube’s rotation around the 𝑧 axis is varied 

up to 90 degrees. We randomly generated 25 points within cube without noise. 

We estimated the motion parameters through Eq.(3) (non-linear approach) and 

Eq.(4) (linear approach) for each synthetic image sequence. The synthetic dataset 

consists of thousands of frames. We compared the estimated rotation parameters around 

the 𝑥, 𝑦, and 𝑧 axes with known rotation parameters to check the accuracy of the results. 

Also, we computed their minimum and maximum errors, Absolute Mean Error (ME) 

and Root Mean Square Error (RMSE), as summarized in Table 1. 

Secondly, while changing the object's position in front of the static camera, we 

captured thousands of image sequences for preparing a real dataset. The object’s 

position is fixed arbitrarily in the first frame of the moving object. The object moves 

300 𝑚𝑚 closer to the camera and 600 𝑚𝑚 away from the camera in the z axis 

direction. The object is translated by up to 200 𝑚𝑚 in the x and y axes direction. We 

rotated the object around the z-axis by 90 degrees and the x and y axes by 20 degrees.  

We compared the estimated rotation parameters around the 𝑥, 𝑦, and 𝑧 axes with 

known rotation parameters to check the accuracy of the results. Also, we computed 

their minimum and maximum errors, Absolute Mean Error (ME) and Root Mean 

Square Error (RMSE), as summarized in Table 2. 
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Table 1. Comparison of error analysis for rotations around 𝒙, 𝒚 and 𝒛 axis for the synthetic 

dataset 

Method Non-linear Linear 

Comparison of Maximum Error /degrees/ 

𝝎 = 𝟏° 𝒕𝒐 𝟐𝟎° 1.647 1.615 

𝝋 = 𝟏° 𝒕𝒐 𝟐𝟎° 1.986 1.891 

𝜿 = 𝟏° 𝒕𝒐 𝟗𝟎° 1.937 1.828 

Comparison of Minimum Error /degrees/ 

𝝎 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.015 0.009 

𝝋 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.005 0.01 

𝜿 = 𝟏° 𝒕𝒐 𝟗𝟎° 0.014 0.016 

Comparison of Mean Error /degrees/ 

𝝎 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.549 0.498 

𝝋 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.648 0.647 

𝜿 = 𝟏° 𝒕𝒐 𝟗𝟎° 0.684 0.556 

Comparison of RMS Error /degrees/ 

𝝎 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.68 0.632 

𝝋 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.818 0.801 

𝜿 = 𝟏° 𝒕𝒐 𝟗𝟎° 0.811 0.645 

Table 2. Comparison of error analysis for rotations around 𝒙, 𝒚 and 𝒛 axis for real scene 

Method Non-linear Linear 

Comparison of Maximum Error /degrees/ 

𝝎 = 𝟏° 𝒕𝒐 𝟐𝟎° 1.867 1.993 

𝝋 = 𝟏° 𝒕𝒐 𝟐𝟎° 1.59623 1.731 

𝜿 = 𝟏° 𝒕𝒐 𝟗𝟎° 0.892 0.757 

Comparison of Minimum Error /degrees/ 

𝝎 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.00014 0.000 

𝝋 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.00045 0.001 

𝜿 = 𝟏° 𝒕𝒐 𝟗𝟎° 0.0051 0.00 

Comparison of Mean Error /degrees/ 

𝝎 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.538 0.564 

𝝋 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.346 0.403 

𝜿 = 𝟏° 𝒕𝒐 𝟗𝟎° 0.391 0.312 

Comparison of RMS Error /degrees/ 

𝝎 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.685 0.717 

𝝋 = 𝟏° 𝒕𝒐 𝟐𝟎° 0.346 0.403 

𝜿 = 𝟏° 𝒕𝒐 𝟗𝟎° 0.434 0.364 

 
As we see in Table 1, the linear approach is more accurate than the non-linear 

approach for accurate feature correspondences. Also, we can observe that the linear 

approach is more sensitive for noisy measurements of feature correspondences than the 

non-linear approach, as shown in the most results in Table 2. 

Generally, we see in Table 1-2 that the two estimation methods produced negligible 

errors in both synthetic and real dataset. It is also proved that large perspective changes 

don’t affect the accuracy of the estimated motion parameters for all proposed methods 

with accurate point correspondences. Finally, we can conclude that the non-linear 
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approach produces more accurate results for real dataset. The linear approach produces 

more accurate results for the 3D object in synthetic dataset. 

5 Conclusion 

In this study, we showed two approaches to determine the motion parameters of the 

moving object from point correspondences. We estimated the motion parameters by 

using corresponding points between the template region and subsequent frames. We 

can try the linear algorithms if we have eight or more correspondences. Solving non-

linear equations is viable if we have a good initial guess solution. In the case of six or 

more correspondences, the non-linear solution is generally unique. Good initial values 

of these non-linear equations are estimated from the para-perspective projection model. 

The results of both approaches were accurate in large changes of the translation and 

rotation. In particular, the non-linear approach is produced negligible error with noisy 

point correspondences. The linear approach is more robust to estimate the motion 

parameters from accurate point correspondences. 
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