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Abstract. In this paper, we consider a multiplicative optimal control problem

subject to a system of linear differential equation.It has been shown that product

of two concave functions defined positively over a feasible set is quasiconcave.

It allows us to consider the original problem from a view point of quasiconvex

maximization theory and algorithm. Global optimality conditions use level set

of the objective function and convex programming as subproblem. The objective

function is product of two concave functions. We consider minimization of the

objective functional. The problem is nonconvex optimal control and application

of Pontriyagin’s principle does not always guarantee finding a global optimal

control. Based on global optimality conditions, we develop an algorithm for

solving the minimization problem globally.
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1 Introduction

We consider the following multiplicative optimal control minimization problem:

min
u∈V

f(x(T )) · g(x(T )) (1.1)

{
ẋ(t) = A(t)x+B(t)u(t) + C(t)
x (t0) = x0 (1.2)

u ∈ V = {u ∈ Lr
2([t0, T ])|u(t) ∈ U, t ∈ [t0, T ]} (1.3)

where t0 and T are given with −∞ < t0 < T < +∞, x = [x1, ..., xn]
T ∈ Rn,

u(t) ∈ [u1(t), u2(t), ..., ur(t)]
T ∈ Rr are respectively, the state and control, and

elements of the matrix valued functions A(t) ∈ Rn×n, B(t) ∈ Rn×r and C(t) ∈ Rn×1

are piecewise continuous on [t0, T ]. Let U ⊂ Rr be a compact and convex subset.

The above problem has many applications in engineering and economics. For instance,

a problems of maximizing advertising efficiency [13] and an efficiency of average

productivity are formulated as a multiple programming. There are numerous methods

in the literature for solving problem (1.1)–(1.3) in a finite dimensional space. Problem

(1.1)–(1.3) has been considered in a finite dimensional case in [2, 3, 7, 11, 15, 18, 22] for

the case when f is concave and g is convex. We formulate problem(1.1) as a terminal

multiplicative nonconvex optimal control and then we reduce it to a quasiconvex

maximization so that we could apply a result in [5].

We call problem (1.1)–(1.3) as the multiplicative optimal control minimization problem.

It is well known that [17, 19, 8] the solution of system (1.2) can be written as:
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x (u, t ) = F (t, t0)x
0 +

∫ t

t0

F (t, τ) [B(τ)u(τ) + C(τ)] dτ (1.4)

where, F (t, τ) ∈ Rn×n is the fundamental matrix solution of the matrix equation

{
∂F (t,τ)

∂t = A(t)F (t, τ), t ≥ τ ∈ [t0, T ]
F (τ, τ) = I

(1.5)

Here, I denotes the identity matrix. Note that x (u, t ) is an absolutely continuous

vector-valued function of the time t. Define the reachable set of system (1.2) with

respect to u ∈ U .

D = D(T ) = {y ∈ Rn|y = x (u, t ), u ∈ U} . (1.6)

It is known that D ⊂ Rn is a convex set [19]. Then multiple optimal minimization

control problem can written as

min
x∈D

ϕ(x(T )) = f(x(T )) · g(x(T )). (1.7)

Finally, assume that f, g : D → R are concave on D. Also, f(· ) and g(· ) are supposed

to be differentiable and positive defined on D.

The rest of the paper is organized as follows. Multiple optimal control minimization

problem with the linear controlled system of differential equations has been considered

in Section 2. In Section 3, an algorithm based on approximation of reachable set is

given.

2 Multiplicative optimal control minimization problem

Definition 1. [4] A function ϕ : D → R is said to be quasiconcave on a convex set
D ⊂ Rn

ϕ (αx+ (1− α)y) ≥ min {ϕ(x), ϕ(y)}
is satisfied for all x, y ∈ D and α ∈ [0, 1]. If ϕ is quasiconcave then −ϕ is called
quasiconvex.

Theorem 1. [2] A function f : D → R is quasiconvace on D if and only if the set

Lc(f) = {x ∈ D|ϕ(x) ≥ c}

is convex for all c ∈ R.

Consider a problem of minimizing the product of two concave funtions

min
x∈D

ϕ = f · g

where f, g : D → R are positive defined concave functions on a convex set D ⊂ R
n.

Lemma 1. [2] The function ϕ is quasiconcave on D ⊂ R
n.

Proof. Define the set Lc(ϕ) :

Lc(ϕ) = {x ∈ |ϕ(x) ≥ c}
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for all positive c ∈ R+.
We show that Lc(ϕ) is convex. Take points x, y ∈ Lc(ϕ) and α ∈ [0, 1].
Then ϕ(αx + (1 − α)y) ≥ αϕ(x) + (1 − α)ϕ(y) and means that

αx+ (1− α)y ∈ Lc(ϕ), c > 0.
Now we are ready to formulate global optimality conditions for problem (1.7)

On the other hand, problem (1.7) can be treated equivalently, as a quasiconvex

maximization problem

min
x∈D

(ϕ) = −max(−ϕ) = −max ϕ(x) (2.1)

where, ϕ(x) = −ϕ(x).
From Lemma 1, it is clear that the function ϕ (x(·)) is quasiconvex on D. Thus, problem

(1.7) is a quasiconcave minimization problem while problem (2.1) is an equivalent

quasiconvex maximization problem. Now, we shall apply the global optimality conditions

[5] to Problem (2.1).

Theorem 2. [5] Let
Eϕ(z)(ϕ) = {y ∈ Rn|ϕ(y) = ϕ(z)} (2.2)

Conditions
〈ϕ′(y), x− y〉 ≤ 0 (2.3)

holds for all y ∈ Eϕ(z)(ϕ) and x ∈ D, where ϕ′ denotes the gradient. In addition, if

ϕ′(y) 
= 0 hold for all y ∈ Eϕ(z)(ϕ), then, condition (2.3) is a sufficient condition for

z ∈ D to be a global solution to problem (2.1).

Lemma 2. Suppose that for any feasible points x, y ∈ D such that the inequality

〈ϕ′(y), x− y〉 > 0

holds. Then, ϕ(x) ≥ ϕ(y).

Proof. On the contrary, assume that ϕ(x) < ϕ(y). Since ϕ is quasiconvex, we have

ϕ (αx+ (1− α)y) ≤ max {ϕ(x), ϕ(y)} = ϕ(y)

By Taylor’s formula, there is a neighborhood of the point y on which

ϕ (y + α(x− y))− ϕ(y) = α

(
〈ϕ′(y), x− y〉+ o(α ‖x− y‖)

α

)
≤ 0,

for sufficiently small α > 0, where

lim
α→0

o(α ‖x− y‖)
α

= 0.

Therefore, 〈ϕ′(y), x − y〉 ≤ 0 which contradicts 〈ϕ′(y), x − y〉 > 0. This completes

the proof.

Let u∗ be an admissible control which is a global optimal control to problem (1.7) and

let x∗ be the corresponding solution of system (1.2). Introduce an auxiliary function

Π(y) defined by

Π(y) = max
x∈D

〈ϕ′(y), x− y〉, y ∈ Rn (2.4)

Then, based on Theorem 2, we can derive the global optimality conditions for Problem

(1.7) in the following theorem.
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Theorem 3. A control u∗ ∈ V is a global optimal control to problem (1.7) if and only
if

max
{
Π(y)|y ∈ Eϕ(x∗)(ϕ)

} ≤ 0 (2.5)

where x∗ = x∗(u∗, T ) ∈ D(T ).

Proof. The validity of Theorem 3 is equivalent to that of the optilimality condition

(2.3).

From Theorem 3, we can conclude that if there exist a process (x̃, ũ) and ỹ ∈ Eϕ(x̄)(ϕ)
such that

〈ϕ′(ỹ), x̃− ỹ〉 > 0 (2.6)

then the control ū is not a global optimal control to problem (1.7), where x̃ = x (ũ, T ),
ỹ = y (ū, T ) and ũ, ū ∈ V . Before we formulate an algorithm for solving problem

(1.7), we need to compute Π(y) for any y ∈ Rn. First, we consider the linear optimal

control problem

max
x∈D

〈ϕ′(y), x〉. (2.7)

Consider the following system of differential equations for a given y ∈ Rn.

{
ψ̇ = −ATψ
ψ(T ) = −ϕ′(y)

(2.8)

This system, which is known as the adjoint system, has a unique piecewise differentiable

solution ψ(t) = y (y, t ) defined on [t0, T ], where ψ(t, y) = [ψ1(t), · · · , ψn(t)]
T

. ψ(t)
is referred to as the adjoint variable. Problem (1.7) can be solved by using the results

presented in the following theorem.

Theorem 4. [3] Let ψ(t) = ψ (y, t ), t ∈ [t0, T ] be a solution of the adjoint system (2.8)
for y ∈ Rn. An admissible control z(t) = z (y, t ) is an optimal control to Problem
(1.7), then it is necessary and sufficient that

〈ψ (y, t ), B(t)z (y, t )〉 = min
u∈V

〈ψ (y, t ), B(t)u(t)〉 (2.9)

for almost every t ∈ [t0, T ].

On the basis of Theorem 4, the value Π(y) can be computed by using the following

algorithm.

Algorithm OPTLIN

1. Solve the adjoint system (2.8) for a given y ∈ Rn. Let ψ(t) = ψ (y, t ) be the

solution.

2. Find the optimal control z(t) = z (y, t ) as a solution of the problem

min
u∈U

〈ψ(t), B(t)u〉

at each moment of t ∈ [t0, T ].
3. Find a solution x(t) = x (z, t ) of system (1.2) for u(t) = z (y, t ).
4. Find x(T ) = x (z, T ) by (4) with t = T .

5. Compute Π(y) by the formula Π(y) = 〈ϕ′(y), x(T )− y〉.
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3 Approximation set

We use the following definition introduced in [6].

Definition 2. For a given integer m, let Am
z be the set defined by

Am
z =

{
y1, y2, · · · , ym|yi ∈ Eϕ(z)(ϕ) ∩D, i = 1, 2, . . . ,m

}
Then, it is called an approximation set, where z = x(u, T ), u ∈ V .

Lemma 3. Suppose that there exist a feasible point z ∈ D and a point yi ∈ Am
z such

that

〈ϕ′(yj), uj − yj〉 > 0

then ϕ(uj) > ϕ(z), where 〈ϕ′(yj), uj〉 = max
x∈D

〈ϕ′(yj), x〉.

Proof. The proof follows from Lemma 2.

Based on the properties of quasiconvexity of ϕ(·) and global optimality conditions, we

propose an algorithm for solving the problem (1.7). The algorithm which differs from

Algorithm 2 [6] in finding a local optimal control may now be written as follows.

Algorithm OPTGL

Step 1. Let k := 0 and let ūk ∈ V be an arbitrary given control. Starting with the

control ūk, we find a local optimal control uk by using the optimal control software

OPTCON [9, 10].

Step 2. Find xk = x
(
uk, T

)
by solving system (1.2) for u = uk.

Step 3. Construct the approximation set Am
xk as follows:

Am
xk =

{
y1, y2, · · · , ym|yi ∈ Eϕ(xk)(ϕ) ∩D(T ), i = 1, 2, . . . ,m

}
.

Step 4. Solve the linear optimal control problems

max
x∈D(T )

〈ϕ′(yi), x〉, i = 1, 2, . . . ,m.

Step 5. Compute Π(yi), i = 1, 2, . . . ,m, by Algorithm 1.

Step 6. Compute ηk:

ηk = Π(yj) = max
1≤i≤m

Π(yi),

let zj = zj(yj , t) be the solution of the problem:

〈ψj(t), B(t)zj〉 = min
u∈U

〈ψj(t), B(t)u〉, t ∈ [t0, T ],

where {
ψ̇j(t) = −AT (t)ψj(t)
ψj(T ) = −ϕ′(yj)

Step 7. If ηk ≤ 0 then terminate. uk is a global approximate solution; otherwise, go

to next step.

Step 8. Set ūk+1 := zj(yj , t) and k := k + 1. Then, go to step 2.
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Lemma 4. Suppose that there is a point yj ∈ Am
xk for uk ∈ D(T ) such that

〈ϕ′(yj), x
(
zj , T

)−yj〉 > 0, where zj satisfies 〈ϕ′(yj), x(zj , T )〉 = max
x(T )∈D(T )

〈ϕ′(yj), x〉.
Then, it holds that

ϕ
(
x(zj , T )

)
> ϕ

(
xk(zk, T )

)

Proof. From Lemma 2, we have

〈ϕ′(yj), x(zj , T )− yj〉 > 0

thus

ϕ
(
x(zj , T )

) ≥ ϕ
(
yj
)
= ϕ

(
xk(uk), T

)

This completes the proof.

Theorem 5. If ηk > 0 for all k = 1, 2, . . . , s, the sequence
{
J(uk)

}
constructed by

Algorithm OPTGL is a monotonic increasing sequence, i.e.,

J(uk+1) > J(uk), k = 1, 2, . . . , s

where J(uk) = ϕ
(
x(uk, T )

)
.

4 Conclusions

Multiple optimal control minimization problem has been considered. The problem is

nonconvex and reduces to a quasiconvex maximization problem in a finite dimensional

space via the reachable set of the system. For solving the maximization problem we

used the global optimality conditions [5]. We propose the Algorithm OPTGL based

on these conditions. Subproblems of Algorithm OPTGL are linear optimal control

problems which make the algorithm easily implementable. Numerical implementation

will be discusseal in a next paper.
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