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Expression and functional role of LncRNA GSEC in 
oral squamous cell carcinoma

Objective: The current investigation seeks to elucidate the regulatory impact of the long non-
coding RNA GSEC (lncRNA GSEC) on oncogenic mechanisms in oral squamous cell carcinoma.
Methods: The expression dynamics of GSEC were systematically mapped across in vitro 
systems, including healthy oral keratinocyte controls (NHOK) and their malignant counterparts 
(SCC-25, SCC-9, CAL-27), utilizing standardized qRT-PCR protocols. CAL-27 (highest GSEC 
expression) underwent siRNA-mediated knockdown. The assessment of cellular functions 
such as proliferation, apoptosis regulation, mobility, and invasion was conducted utilizing 
validated protocols: CCK-8 for cell viability assessment, flow cytometry for apoptotic cell 
identification, Transwell systems for measuring invasive ability, and scratch assay for migration 
analysis. mRNA and protein levels of proliferation/apoptosis markers (Ki67, PCNA, BCL-2, BAX, 
caspase-9) were analyzed by qRT-PCR, Western blot, and immunofluorescence. Results: GSEC 
was significantly upregulated in OSCC cells vs. NHOK (p<0.05), peaking in CAL-27 (p<0.05 vs. 
SCC-9/SCC-25). Downregulation of GSEC inhibited the proliferation, migration, and invasive 
capabilities of OSCC cells and promoted apoptosis with statistical significance (p<0.05). A 
decrease in Ki67 and PCNA expression, accompanied by an increase in BAX and caspase-9 
and a decrease in BCL-2 levels, was detected at the mRNA and protein levels, with all reaching 
statistical significance at the p<0.05 threshold. Conclusions: GSEC overexpression promotes 
OSCC malignancy by driving proliferation and inhibiting apoptosis. Targeting GSEC may offer 
diagnostic and therapeutic potential for OSCC.
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Introduction 
Oral squamous cell carcinoma (OSCC) accounts for over 90% of all oral malignancies.1 Global 

epidemiological data indicate that OSCC results in more than 500,000 new cases and 140,000 
deaths annually, maintaining consistently high incidence and mortality rates.2 Originating 
primarily from the oral mucosal epithelium, this tumor predominantly affects middle-aged and 
elderly males and is characterized by aggressive tissue infiltration, often involving adjacent 
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One-Year Vision Outcomes of Age-Related 
Macular Degeneration in Mongolians

Objectives: To assess the post-treatment vision outcomes in Mongolian patients with age-

related macular degeneration. 

Methods: Surveys assessed subjects' antioxidant intake, age, gender, race, body mass index, 

hypertension, smoking habits, and sunlight exposure. 

Results: There were 136 cases and 100 controls, of whom 130 (55.1%) were female. Of the 

cases, 100 individuals had the dry type of AMD, while 36 participants had the wet type of AMD. 

The mean ages of the dry and wet AMD groups and controls were 75.33 ± 6.98 years, 76.0 

± 5.57 years, and 67.03 ± 7.14 years, respectively-the change of central retinal thickness and 

intraocular pressure by month. Our current study found that the central retinal thickness of 

the dry AMD group did not decrease compared to the baseline. However, the value decreased 

from 269.9 ± 89.17 (baseline) to 218.33 ± 41.35 at the 3-month follow-up. Concerning the 

intraocular pressure of all subjects, the baseline pressure of the dry AMD group was 13.88 ± 

3.02, and the value was increased to 14.28 ± 2.27 after one year of treatment. In the wet AMD 

group, the baseline value was 14.06 ± 3.58, rising to 14.42 ± 3.51 at one-year follow-up. 

Conclusion: A larger sample may produce different and better results.
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Introduction

An irreversible vision loss is commonly caused by age-related macular degeneration (AMD) 

in the older population. It is a significant risk factor for disability in older adults, according to 

approximately 9% of all cases of blindness [1-2]. Schuster et al. demonstrated that, in Germany, 

the number of persons with early AMD rose from 5.7 million in 2002 to 7 million in 2017-an 

increase of 23% in 15 years [3]. Another study also revealed that half of all cases of blindness 

and high-grade visual impairment in Germany are due to late-stage AMD [4]. A meta-analysis 

of the Chinese population showed that the crude pooled prevalence of early and late AMD 

among Chinese populations worldwide aged 50 years and above is 4.9% (95% CI: 3.1%-

7.7%) and 0.7% (95% CI: 0.5%-1.1%), respectively [5]. In the nationwide population-based 
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muscles, nerves, vascular systems, and the jawbone, with early 
lymph node metastasis being a common feature.3-5 Etiologically, 
the progression of OSCC involves the synergistic action of 
multiple risk factors, including chronic irritation, tobacco/
alcohol exposure, nutritional imbalance, viral infection, radiation, 
and genetic susceptibility, leading to complex pathological 
mechanisms that result in significant treatment challenges and 
poor prognosis.2 In-depth studies have shown that the invasion 
and metastasis of OSCC are closely related to the aberrant 
activation of several classic oncogenic pathways (such as PI3K/
AKT/mTOR, MAPK, Wnt/β-catenin, etc.) and the dysregulation 
of downstream effector molecules (like EMT-related transcription 
factors, cell cycle regulatory proteins, etc.), forming a complex 
regulatory network that drives the malignant phenotype of the 
tumor.3 The current standard of care relies on surgical resection 
combined with radiotherapy and chemotherapy, while targeted 
and immunotherapy approaches remain in the exploratory 
phase without significant breakthroughs.6 Despite continuous 
advancements in treatment modalities, the overall patient 
survival rate has not seen a significant improvement. Similar to 
other malignant tumors, the development and progression of 
OSCC involve a multi-gene, multi-factor regulatory network.7,8 
Therefore, elucidating the key molecular pathways is crucial 
for early identification, personalized treatment, and precise 
prognostic assessment.

Non-coding RNAs (ncRNAs) constitute over 98% of the 
human transcriptome. These are RNA molecules that do 
not encode proteins. Among them, long non-coding RNAs 
(lncRNAs) are defined as ncRNAs exceeding 200 nucleotides 
in length. LncRNAs are not translated into protein and exert 
their biological functions through mechanisms such as post-
transcriptional regulation.10-12 The lncRNA GSEC (also known as 
DCPS-AS1 or ST3GAL4-AS1) possesses a specific G-quadruplex 
(G4) structure, which is maintained by four guanine bases linked 
through Hoogsteen hydrogen bonds and classified as a non-
canonical nucleic acid conformation.13 Research indicates that 
G-quadruplex structures (G4S) are widely involved in biological 
processes, including transcription, polyadenylation, splicing, 
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RNA metabolism, and stability regulation.14 Recent studies have 
revealed the oncogenic role of lncRNA GSEC in various cancers, 
such as colorectal cancer, osteosarcoma, lung adenocarcinoma, 
hepatocellular carcinoma, and breast cancer, where it promotes 
tumor progression by modulating proliferation, migration, 
invasion, remodeling of the immune microenvironment, and 
epithelial-mesenchymal transition (EMT).15-17 Its mechanism 
of action involves complex molecular networks; some studies 
suggest it acts as a competing endogenous RNA (ceRNA), 
sequestering microRNAs (miRNAs) to derepress the inhibition 
of downstream oncogenes, thereby activating key signaling 
pathways like Wnt/β-catenin and PI3K/AKT; alternatively, 
its G4 structure can directly bind and regulate transcription 
factor activity, influencing the expression levels of EMT-related 
molecules.18-20However, the expression level and mechanistic 
role of lncRNA GSEC in OSCC remain unclear. This study aims to 
delineate its functional significance in the pathogenesis of OSCC, 
providing a theoretical basis for discovering novel diagnostic and 
therapeutic targets.

Material and Methods

Cell Culture

Human oral keratinocytes that are normal (NHOK) along with 
OSCC cell lines—specifically SCC-25, CAL-27, and SCC-9—were 
sourced from Procell. The culturing of these cells was conducted 
in Dulbecco’s Modified Eagle Medium (DMEM) enhanced with 
10% fetal bovine serum (FBS—Gibco), while maintaining a 
constant temperature of 37°C and a CO2 environment of 5%.

Plasmid Transfection

Construction of plasmids was facilitated by Hanbio 
Biotechnology Co., Ltd., located in Shanghai.Sufficient siRNA 
pooled against GSEC targets as well as control siRNA were 
sourced from Hongxun Biotechnology Co., Ltd., based in Suzhou.
The transfection procedure employed Lipofectamine™ 2000 
from Thermo Fisher Scientific, adhering strictly to the provided 
guidelines for use. The sequence designs are listed in Table 1.

si-GSEC-1 sense: 5' GGAGGUCACAACAGUACAA 3'

antisense: 5'UUGUACUGUUGUGACCUCC3'

si-GSEC-2 sense: 5'GAUUCCUUGUGAAGAUAAU 3'

antisense: 5' AUUATCUUCACAAGGAAUC 3'

Table 1. Sequence Design Details for LncRNA GSEC
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qRT-PCR

RNA was purified from samples employing the TriQuick 
Reagent from Solarbio, Beijing. The synthesis of complementary 
DNA (cDNA) was accomplished utilizing the SureScript™ First-
Strand cDNA Synthesis Kit obtained from GeneCopeia in the 
USA. qRT-PCR was performed utilizing a 2×SYBR Green qPCR 

Deleheibateer, et al.

GSEC-Fwd: 5'  AGCAGGCTTGGGATGGTGT  3'

GSEC-Rev: 5'  GGTTTAGGTGAGCAGGGTGG  3'

BCL2-F 5'  AGGATTGTGGCCTTCTTTGA  3'

BCL2-R 5'  GCACCTACCCAGCCTCCGTTAT  3'

Bax-F 5'  CGCTGACGGCAACTTCAACTG  3'

Bax-R 5'  ATGAGCACTCCCGCCACAAA  3'

CASPASE9-F 5'  CGAACTAACAGGCAAGCAGC  3'

CASPASE9-R 5'  ACATCACCAAATCCTCCAGAAC  3'

Ki67-F 5'  AAGAAGAGGTCCTACCAGTCG  3'

Ki67-R 5'  ATCCCAGTTCCATAGTTTGC  3'

PCNA-F 5'  TCCAGGGCTCCATCCTCAAGA  3'

PCNA-R 5'  CATATACGTGCAAATTCACCAGA  3'

β-actin-F 5'  CGTGACATTAAGGAGAAGCTG  3'

β-actin-R 5'  TAGAAGCATTTGCGGTGGAC  3'

Table 2. Primer Design 

Master Mix supplied by Servicebio in Wuhan, employing β-actin 
as the internal reference gene. The relative quantification of 
gene expression was determined employing the 2^−ΔΔCt 
methodology. Specific information regarding the primer 
sequences can be found in Table 2.

Western Blotting

Overall protein was isolated by employing RIPA lysis buffer 
provided by Beyotime. The proteins were subjected to 10% 
SDS-PAGE separation and then blotted onto PVDF membranes.
The membranes were then immersed in a solution of primary 
antibodies for a duration of 24 hours at 4°C: anti-Caspase9 
(1:1000 dilution, A18676, Sanying), anti-BCL2 (1:1000 dilution, 
12789-1-AP, Sanying), anti-BAX (1:1000 dilution, 50599-2-Ig, 
Sanying), and anti-β-actin (1:10,000 dilution, ab8227, Abcam).
Following exposure to HRP-conjugated secondary antibodies at 
a dilution of 1:8000, the presence of protein bands was made 
apparent using an ECL detection kit from Wanleibio, and their 
cognate signals were quantified via chemiluminescence-based 
imaging techniques.

CCK-8 Assay

To assess cell proliferation, the CCK-8 assay, sourced from 

Beyotime in Shanghai, was utilized. One thousand cells per well 
were seeded into 96-well plates. At intervals of 24, 48, and 72 
hours post-seeding, 10μL of CCK-8 reagent was added and 
the plates were incubated for 1 hour. Thereafter, absorbance 
measurements were conducted at 450 nm using a microplate 
reader.

Flow Cytometry

Following a 48-hour period post-transfection, the cells were 
collected, rinsed using phosphate-buffered saline (PBS), and 
then marked with Annexin V-FITC/PI (supplied by Beyotime) 
for a 15-minute interval in dark conditions. Subsequently, the 
measurement of apoptotic cell levels was carried out utilizing 
flow cytometric analysis (by BD Biosciences).

Transwell Assay

A population of 300,000 cells per milliliter was inoculated 
into Transwell inserts lined with Matrigel (pore size of 8 μm, 
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supplied by Thermo Fisher Scientific) utilizing a medium devoid of 
serum. The lower compartment’s medium was made up of a 20% 
concentration of fetal bovine serum (FBS). Following a 48-hour 
incubation period, the cells that had migrated were treated with 
a 4% solution of paraformaldehyde for fixation, subsequently 
dyed using a 0.1% solution of crystal violet, and their numbers 
were determined using a microscope at a magnification of 100 
times.

Wound Healing Assay

Fully confluent cell cultures were gently induced to form a 
wound using a sterile pipette tip.Upon rinsing with PBS, the cells 
were then grown in a medium devoid of serum.Photographs of 
the wound healing process were taken at intervals of 0, 24, and 
48 hours post-initiation, and the closure was thereafter analyzed 
with the aid of the ImageJ software.

Immunofluorescence

The cells were treated with a 4% solution of paraformaldehyde 
for fixation, followed by a permeabilization step using 0.2% 
Triton X-100. After blocking with a 5% BSA solution, they were 
exposed to either anti-Ki67 (diluted 1:200) or anti-PCNA (diluted 
1:200) antibodies, with the incubation proceeding overnight at 
a temperature of 4°C. Fluorescence micrographs were obtained 
following the application of Alexa Fluor-tagged secondary 
antibodies (diluted 1:200) along with DAPI for staining.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism 10.0 
software (GraphPad, San Diego, CA, USA). All experiments were 
conducted with three independent biological replicates (n=3). 
Comparisons between two groups were assessed using a two-
tailed Student’s t-test. Comparisons among three or more groups 
were analyzed using a One-way Analysis of Variance (ANOVA). If 
the ANOVA test result was significant, Tukey’s post-hoc test was 
subsequently employed for all possible pairwise comparisons. A 
p-value<0.05 was considered statistically significant.

Results

Profiling GSEC Expression within OSCC Cell Lines

qRT-PCR analysis revealed significantly higher GSEC expression 
in OSCC cell lines (SCC-25, CAL-27, SCC-9) compared to NHOK 
(p< 0.05) (Fig. 1A). Among OSCC cells, CAL-27 exhibited the 
most pronounced GSEC upregulation (p< 0.05 vs. SCC-9/SCC-
25) and was selected for subsequent experiments.

Knockdown Efficiency of si-GSEC

Transfection with si-GSEC-1 and si-GSEC-2 in CAL-27 cells 
demonstrated significant GSEC suppression via qRT-PCR (p< 
0.05, Fig. 1C). si-GSEC-1 showed superior knockdown efficiency 
and was utilized for further investigations.

12 
 

Fig.1A. The expression of GSEC in NHOK and OSCC cell lines 

Fig.1B. The results of CCK8 cell proliferation assay 

Fig.1C. si-GSEC transfection efficiency 

Fig.1D. The results of CCK8 cell proliferation assay line graph

Fig.1E. CCK8 flow cytometry results

Statistical significance is denoted by asterisks: *p<0.05, **p<0.01, ***p<0.001 and  

****p<0.0001

GSEC Enhances Invasion and Migration

Figure 1A. The expression of GSEC in NHOK 
and OSCC cell lines 
Figure 1B. The results of CCK8 cell proliferation 
assay 
Figure 1C. si-GSEC transfection efficiency 
Figure 1D. The results of CCK8 cell proliferation 
assay line graph
Figure 1E. CCK8 flow cytometry results
Statistical significance is denoted by asterisks: 
*p<0.05, **p<0.01, ***p<0.001 and  
****p<0.0001
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Fig.2A. Transwell experimental results 

Fig. 2B. Wound Healing Assay Results 

Fig. 2C. Bar Graph of Wound Healing Assay Results 

Fig.2D. qRT-PCR detection of GSEC, ki67, pcna, BCL-2, BAX, caspase-9

Statistical significance is denoted by asterisks: *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001

Protein-Level Validation

Western blot analysis was performed to detect three proteins: Bax, Bcl-2, and Caspase-9.

Compared to the control group, the expression levels of the apoptosis-related markers Bax

and Caspase-9 were significantly upregulated in the si-GSEC group, while the expression of 

Bcl-2 was clearly suppressed. These differences were statistically significant (p<0.05, Fig. 

3A-D). These findings, at the protein level, demonstrate that GSEC exerts an inhibitory effect 

Figure 2A. Transwell experimental results 
Figure 2B. Wound Healing Assay Results 
Figure 2C. Bar Graph of Wound Healing Assay Results 
Figure 2D. qRT-PCR detection of GSEC, ki67, pcna, BCL-2, BAX, 
caspase-9
Statistical significance is denoted by asterisks: *p<0.05, 
**p<0.01, ***p<0.001 and ****p<0.0001

Functional Impact of GSEC on OSCC Cells

GSEC Promotes Proliferation and Suppresses Apoptosis
The CCK-8 assay results demonstrated that si-GSEC 

significantly inhibited cell proliferation in the CAL27 cell line 
compared to si-NC (p< 0.05, Fig. 1B). A noticeable inhibition 
of CAL27 cell proliferation was observed at the 24 h, 48 h, and 
72 h incubation time points, with the most pronounced and 
statistically significant difference observed at the 72 h time point 
(p< 0.05, Fig. 1D).

Flow cytometry analysis revealed that si-GSEC significantly 
promoted apoptosis in CAL27 cells compared to the control 
group. Cells were allowed to reach approximately 60% 
confluence after 24 hours and were then transfected according 
to their respective groups. Cells were collected 48 hours post-
transfection for the apoptosis assay, which showed that si-GSEC 
exerted a significant pro-early apoptotic effect (p< 0.05, Fig. 1E).
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on apoptosis in OSCC cells. Immunofluorescence (IF) staining was used to detect the two 

proliferation-related proteins, Ki67 and PCNA. The results indicated that the expression of 

both proliferation markers, Ki67 and PCNA, was significantly lower in the si-GSEC group 

compared to the control group (p< 0.05, Fig. 3E, F). These protein-level results confirm that 

GSEC promotes tumor growth.

Fig.3A.Western blot detection of Bax results 

Fig.3B. Western blot detection of caspase-9 results 

Fig.3C. Western blot detection of Bcl-2 results 

Fig.3D. Western blot detection of Bax, Bcl-2 and caspase-9 results 

Fig.3E, F. The results of ki67 and PCNA were detected by immunofluorescence assay.

Statistical significance is denoted by asterisks: *p<0.05, **p<0.01, ***p<0.001, and 

****p<0.0001.

Discussion
In this study, we first demonstrated that LncRNA GSEC is significantly overexpressed in 

Figure 3A. Western blot detection of Bax results 
Figure 3B. Western blot detection of caspase-9 results 
Figure 3C.  Western blot detection of Bcl-2 results 
Figure 3D. Western blot detection of Bax, Bcl-2 and caspase-9 
results 
Figure 3E, F  The results of ki67 and PCNA were detected by 
immunofluorescence assay.
Statistical significance is denoted by asterisks: *p<0.05, 
**p<0.01, ***p<0.001, and ****p<0.0001.

Discussion
In this study, we first demonstrated that LncRNA GSEC is 

significantly overexpressed in oral squamous cell carcinoma 
(OSCC) cell lines and plays a crucial oncogenic role. The 
class of LncRNAs are increasingly recognized as key factors 
within oncogenesis, attracting increased attention towards 
unraveling their complex molecular functions.21 Notably, GSEC 
exhibits significant overexpression in OSCC cell lines. Genetic 
intervention experiments demonstrated that GSEC silencing 
markedly suppresses tumor cell proliferation, invasion, migration, 
and induces apoptosis. Functionally, GSEC has the potential 
to facilitate tumorigenic properties through the regulation of 
the epithelial-mesenchymal transition process and proteins 
associated with the cell cycle.18 Supporting this, Yang, et al.19 

GSEC Enhances Invasion and Migration
The Transwell assay results showed that si-GSEC effectively 

inhibited the invasion capability of CAL27 cells compared to si-
NC (p< 0.05). After 48 hours of incubation, the number of cells 
that invaded through the Matrigel matrix in the si-GSEC group 
was significantly reduced (p<0.05, Fig.2A). This finding suggests 
that GSEC can significantly promote the invasion capability of 
CAL27 cells.

The Wound Healing assay results indicated that the percentage 
of wound closure distance in the si-GSEC group was significantly 
lower than that in the si-NC group. Consequently, the cell 
migration rate in the si-GSEC group was lower than that in the 
si-NC group at both 24h and 48h time points (p< 0.05, Fig. 2B, 
C). This result suggests that GSEC can significantly enhance the 

Protein-Level Validation

Western blot analysis was performed to detect three proteins: 
Bax, Bcl-2, and Caspase-9. Compared to the control group, 
the expression levels of the apoptosis-related markers Bax and 
Caspase-9 were significantly upregulated in the si-GSEC group, 
while the expression of Bcl-2 was clearly suppressed. These 
differences were statistically significant (p<0.05, Fig. 3A-D). These 
findings, at the protein level, demonstrate that GSEC exerts an 
inhibitory effect on apoptosis in OSCC cells. Immunofluorescence 
(IF) staining was used to detect the two proliferation-related 
proteins, Ki67 and PCNA. The results indicated that the expression 
of both proliferation markers, Ki67 and PCNA, was significantly 
lower in the si-GSEC group compared to the control group (p< 
0.05, Fig. 3E, F). These protein-level results confirm that GSEC 
promotes tumor growth.

migration capability of CAL27 cells.
mRNA Regulation of Proliferation/Apoptosis Markers

The qRT-PCR results confirmed successful cell transfection. 
Compared to the si-NC group, the expression levels of the 
apoptosis-related marker proteins BAX and caspase-9 were 
significantly upregulated in the si-GSEC group, while the 
expression of BCL-2 was clearly inhibited. Furthermore, 
the proliferation-related markers Ki67 and PCNA showed 
significantly lower expression. All observed differences were 
statistically significant (p < 0.05). These findings further validate 
that GSEC influences biological behaviors such as proliferation 
and apoptosis in OSCC cells at the mRNA level (Fig.2D).
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identified GSEC within an 18-LncRNA prognostic signature for 
lung adenocarcinoma (LUAD), with enriched pathways including 
EMT, hypoxia, stemness, and proliferation. Similarly, Fan et al.20 

revealed that LncRNA LETS1 promotes TGFβ-induced EMT via 
TβR1 stabilization. These findings collectively highlight LncRNAs’ 
roles in tumor progression through EMT regulation. This research 
elucidates the role of GSEC in regulating OSCC and highlights 
its potential as a therapeutic target for RNA-based interventions, 
which holds substantial promise for enhancing patient outcomes.

Multidimensional functional assays confirmed GSEC’s 
pivotal role in regulating OSCC malignant phenotypes. Gene 
silencing experiments demonstrated that GSEC knockdown 
significantly downregulated proliferation markers (Ki67, PCNA) 
while activating pro-apoptotic proteins (BAX, caspase-9) and 
suppressing anti-apoptotic BCL-2 (p<0.05). This molecular 
profile suggests GSEC orchestrates tumor proliferation through 
dual regulation of cell cycle progression (G1/S transition) and 
mitochondrial apoptosis.22 Mechanistically, GSEC may interact 
with cyclin-dependent kinases (CDK4/6) to accelerate G1/S 
transition, paralleling the oncogenic function of DLEU2 reported 
by He, et al.23, which promotes cell cycle progression via p53 
suppression. Similarly, Fu, et al.24 revealed that DICER1-AS1 
regulates CDC5L nuclear translocation to block cell cycle 
in osteosarcoma. Notably, HOTAIR driven PI3K/AKT/mTOR 
activation in breast cancer25 shares functional convergence with 
GSEC’s regulatory patterns, reinforcing the conserved role of 
LncRNAs in tumor proliferation networks.

Transwell invasion and wound healing assays demonstrated 
that GSEC suppression significantly impaired OSCC cell 
migration and invasion (p< 0.05). Mechanistically, tumor 
metastasis involves dynamic EMT regulation (evidenced by 
E-cadherin downregulation and N-cadherin upregulation), 
MMP-2/MMP-9 overexpression, and cytoskeletal reorganization 
(F-actin redistribution).26 Notably, GSEC knockdown reduced 
pseudopodia formation and disrupted motility polarity, 
suggesting Rho GTPase (RhoA/ROCK) or integrin-mediated focal 
adhesion signaling involvement.27 Supporting this, Zhou, et al.28 

identified LINC00460 mediated MMP-9 regulation via miR-539 
sponging in thyroid cancer. Our findings align with Zhao et al.29 

who reported NEAT1’s suppression of RhoA/ROCK through miR-
490-3p in LUAD. These convergent mechanisms highlight GSEC’s 
role in coordinating metastatic cascades, positioning it as a 
multi-pathway therapeutic target.

Current standard therapies for OSCC remain confined to 
surgical resection combined with chemoradiotherapy, yet five-year 
survival rates stagnate at 50%-60% due to tumor heterogeneity 
and therapeutic resistance.30,31 While EGFR-targeted therapies 
show partial efficacy, their clinical benefits are constrained by 
spatiotemporal heterogeneity and acquired resistance. Notably, 
breakthroughs in RNA therapeutics—including locked nucleic 
acid (LNA)-modified antisense oligonucleotides (e.g., HOTAIR 
inhibitors) and lipid-encapsulated siRNA (e.g., Patisiran, 
approved for hereditary transthyretin amyloidosis)—have 
propelled LncRNA-targeted agents into clinical trials, offering 
novel precision strategies for OSCC.32-34

The systematic findings of this study establish GSEC as a 
potent oncogenic driver in OSCC. These data provide a strong 
rationale for developing GSEC as a potential diagnostic biomarker 
for early-stage detection and relapse prediction, and as a novel 
RNA interference-based therapeutic target to improve precision 
intervention strategies for OSCC patients.

This study has limitations: 1) GSEC’s functional validation 
was restricted to cell lines without clinical correlation between 
GSEC expression and patient prognosis; 2) While proliferative/
apoptotic protein alterations were observed, the precise 
molecular mechanisms (e.g., upstream regulators or downstream 
effectors) require further elucidation through in vivo models and 
multi-omics approaches.

Conclusion
This study identifies GSEC as an oncogenic LncRNA 

overexpressed in OSCC, driving tumor progression via 
proliferation, apoptosis, and metastasis regulation. Its conserved 
role across malignancies suggests broad therapeutic potential. 
Future investigations should delineate GSEC’s mechanistic 
networks and develop RNA-based targeting strategies to 
advance precision oncology in OSCC.
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